skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 10, 2026

Title: Discovery of H α Emission from a Protoplanet Candidate around the Young Star 2MASS J16120668–3010270 with MagAO-X
Abstract 2MASS J16120668–3010270 (hereafter 2MJ1612) is a young M0 star that hosts a protoplanetary disk in the Upper Scorpius star-forming region. Recent Atacama Large Millimeter/submillimeter Array (ALMA) observations of 2MJ1612 show a mildly inclined disk (i = 37°) with a large dust-depleted gap (Rcav ≈ 0 . 4 or 53 au). We present high-contrast Hαobservations from MagAO-X on the 6.5 m Magellan telescope and new high-resolution submillimeter dust continuum observations with ALMA of 2MJ1612. On both 2025 April 13 and 16, we recovered a point source with Hαexcess with a signal-to-noise ratio ≳5 within the disk gap in our MagAO-X angular and spectral differential images at a separation of 141.96 ± 2.10 mas (23.45 ± 0.29 au deprojected) from the star and a position angle ​​​​​of 159 . ° 00 ± 0 . ° 55. Furthermore, this Hαsource is within close proximity to aK-band point source in the SPHERE/IRDIS observation taken on 2023 July 21. The astrometric offset between theKband and Hαsource can be explained by orbital motion of a bound companion. Thus, our observations can be best explained by the discovery of an accreting protoplanet, 2MJ1612 b, with an estimated mass of 4MJupand a Hαline flux ranging from (29.7 ± 7.5) × 10−16erg s cm2to (8.2 ± 3.4) × 10−16erg s cm2. 2MJ1612 b is likely the third example of an accreting Hαprotoplanet responsible for carving the gap in its host disk, joining PDS 70 b and c. Further study is necessary to confirm and characterize this protoplanet candidate and to identify any additional protoplanets that may also play a role in shaping the gap.  more » « less
Award ID(s):
2410616
PAR ID:
10638452
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
The Astrophysical Journal Letters
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
990
Issue:
2
ISSN:
2041-8205
Page Range / eLocation ID:
L70
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present Atacama Compact Array (ACA) Band-3 observations of the protocluster SPT2349−56, an extreme system hosting >10 ultraluminous infrared galaxies (ULIRGs;LIR ≳  1012L) in a 200 kpc diameter region atz =  4.3, to study its integrated molecular gas content via CO(4–3) and the long-wavelength dust continuum. The ∼30 hr integration represents one of the longest exposures yet taken on a single pointing with the ACA 7 m. The low-resolution ACA data (21 . 0  ×  12 . 2) reveal a 75% excess CO(4–3) flux compared to the sum of individual sources detected in higher-resolution Atacama Large Millimeter/submillimeter Array (ALMA) data (1 . 0  ×  0 . 8). Our work also reveals a similar result by tapering the ALMA data to 10″. In contrast, the 3.2 mm dust continuum shows little discrepancy between ACA and ALMA. A single-dish [Cii] spectrum obtained by APEX/FLASH supports the ACA CO(4–3) result, revealing a large excess in [Cii] emission relative to ALMA. The missing flux is unlikely due to undetected faint sources but instead suggests that high-resolution ALMA observations might miss extended and low-surface-brightness gas. Such emission could originate from the circumgalactic medium or the preheated protointracluster medium (proto-ICM). If this molecular gas reservoir replenishes the star formation fuel, the overall depletion timescale will exceed 400 Myr, reducing the requirement for the simultaneous ULIRG activity in SPT2349−56. Our results highlight the role of an extended gas reservoir in sustaining a high star formation rate in SPT2349−56 and potentially establishing the ICM during the transition phase to a mature cluster. 
    more » « less
  2. Abstract We report a new CO observation survey of LHAASO J0341+5258, using the Nobeyama Radio Observatory 45-m telescope. LHAASO J0341+5258 is one of the unidentified ultra-high-energy (UHE;E> 100 TeV) gamma-ray sources detected by LHAASO. Our CO observations were conducted in 2024 February and March, with a total observation time of 36 hr, covering the LHAASO source (∼0 . ° 3–0 . ° 5 in radius) and its surrounding area (1° × 1 . ° 5). Within the LHAASO source extent, we identified five compact (<2 pc) molecular clouds at nearby distances (<1–4 kpc). These clouds can serve as proton–proton collision targets, producing hadronic gamma rays via neutral pion decays. Based on the hydrogen densities (700–5000 cm−3) estimated from our CO observations and archived Hidata from the Dominion Radio Astrophysical Observatory survey, we derive the total proton energy ofWp(E> 1 TeV) ∼ 1045erg to account for the gamma-ray flux. One of the molecular clouds appears to be likely associated with an asymptotic giant branch (AGB) star with an extended CO tail, which may indicate some particle acceleration activities. However, the estimated maximum particle energy below 100 TeV makes the AGB-like star unlikely to be a PeVatron site. We conclude that the UHE emission observed in LHAASO J0341+5258 could be due to hadronic interactions between the newly discovered molecular clouds and TeV–PeV protons originating from a distant SNR or due to leptonic emission from a pulsar wind nebula candidate, which is reported in our companion X-ray observation paper. 
    more » « less
  3. Abstract In the theory of protoplanetary disk turbulence, a widely adopted ansatz, or assumption, is that the turnover frequency of the largest turbulent eddy, ΩL, is the local Keplerian frequency ΩK. In terms of the standard dimensionless Shakura–Sunyaevαparameter that quantifies turbulent viscosity or diffusivity, this assumption leads to characteristic length and velocity scales given respectively by α H and α c , in whichHandcare the local gas scale height and sound speed. However, this assumption is not applicable in cases when turbulence is forced numerically or driven by some natural processes such as vertical shear instability. Here, we explore the more general case where ΩL≥ ΩKand show that, under these conditions, the characteristic length and velocity scales are respectively α / R H and α R c , where R Ω L / Ω K is twice the Rossby number. It follows that α = α ˜ / R , where α ˜ c is the root-mean-square average of the turbulent velocities. Properly allowing for this effect naturally explains the reduced particle scale heights produced in shearing box simulations of particles in forced turbulence, and it may help with interpreting recent edge-on disk observations; more general implications for observations are also presented. For R > 1 , the effective particle Stokes numbers are increased, which has implications for particle collision dynamics and growth, as well as for planetesimal formation. 
    more » « less
  4. Abstract We use ALMA observations of CO(2–1) in 13 massive (M*≳ 1011M) poststarburst galaxies atz∼ 0.6 to constrain the molecular gas content in galaxies shortly after they quench their major star-forming episode. The poststarburst galaxies in this study are selected from the Sloan Digital Sky Survey spectroscopic samples (Data Release 14) based on their spectral shapes, as part of the Studying QUenching at Intermediate-z Galaxies: Gas, angu L ar momentum, and Evolution ( SQuIGG L E ) program. Early results showed that two poststarburst galaxies host large H2reservoirs despite their low inferred star formation rates (SFRs). Here we expand this analysis to a larger statistical sample of 13 galaxies. Six of the primary targets (45%) are detected, with M H 2 10 9 M. Given their high stellar masses, this mass limit corresponds to an average gas fraction of f H 2 M H 2 / M * 7 % or ∼14% using lower stellar masses estimates derived from analytic, exponentially declining star formation histories. The gas fraction correlates with theDn4000 spectral index, suggesting that the cold gas reservoirs decrease with time since burst, as found in local K+A galaxies. Star formation histories derived from flexible stellar population synthesis modeling support this empirical finding: galaxies that quenched ≲150 Myr prior to observation host detectable CO(2–1) emission, while older poststarburst galaxies are undetected. The large H2reservoirs and low SFRs in the sample imply that the quenching of star formation precedes the disappearance of the cold gas reservoirs. However, within the following 100–200 Myr, the SQuIGG L E galaxies require the additional and efficient heating or removal of cold gas to bring their low SFRs in line with standard H2scaling relations. 
    more » « less
  5. Abstract A search for resonances in top quark pair ( t t ) production in final states with two charged leptons and multiple jets is presented, based on proton–proton collision data collected by the CMS experiment at the CERN LHC at s = 13 TeV , corresponding to 138 fb−1. The analysis explores the invariant mass of the t t system and two angular observables that provide direct access to the correlation of top quark and antiquark spins. A significant excess of events is observed near the kinematic t t threshold compared to the non-resonant production predicted by fixed-order perturbative quantum chromodynamics (pQCD). The observed enhancement is consistent with the production of a color-singlet pseudoscalar ( 1 S 0 [ 1 ] ) quasi-bound toponium state, as predicted by non-relativistic quantum chromodynamics. Using a simplified model for 1 S 0 [ 1 ] toponium, the cross section of the excess above the pQCD prediction is measured to be 8.8 1.4 + 1.2 pb
    more » « less