skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 1, 2026

Title: Real‐Time Tracking of Nanoscale Morphology and Strain Evolution in Bi 2 WO 6 via Operando Coherent X‐Ray Imaging
Nanostructuring photocatalytic and catalytic materials substantially increases the surface‐to‐volume ratio, thereby exposing a greater number of active sites essential for enhanced catalytic efficiency. However, optimizing these efficiencies requires the non‐destructive,operandointerrogation of individual nanocrystals under realistic catalytic conditions—a capability that has long remained elusive. Here, this challenge is addressed by reporting three‐dimensional imaging of defects, crystal morphology, and strain dynamics in individual Bi2WO6(BWO) nanoflakes using Bragg coherent diffractive imaging (BCDI) underoperandotemperature, gas, and light‐driven conditions. It is demonstrated that maintaining a constant temperature of 40°C thermally activates charge carriers, likely enhancing their mobility and reducing recombination rates. Furthermore, an Argon (Ar) gas flow stabilizes the reaction environment, while a mixed Hydrogen–Nitrogen (H2+ N2) flow induces a hydrogen‐triggered semiconducting‐to‐metallic (SM) electronic phase transition accompanied by a structural transformation, as supported by density functional theory (DFT) calculations. Both DFT and BCDI analyses reveal that during the SM phase transition, a new structural phase nucleates near defects and propagates inhomogeneously. Notably, the onset of nanoscale cracking is observed, driven by localized strain accumulation and environmental cycling, which increases surface area and potentially introduces new reactive sites. These findings illustrate that combining advanced nanostructuring withoperandoimaging techniques can provide critical insights into the local structural features that govern photocatalytic performance, paving the way for the rational design of next‐generation photocatalytic materials.  more » « less
Award ID(s):
2314614
PAR ID:
10638462
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-VCH GmbH
Date Published:
Journal Name:
Advanced Materials
Volume:
37
Issue:
37
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Discontinuous solid-solid phase transformations play a pivotal role in determining the properties of rechargeable battery electrodes. By leveraging operando Bragg Coherent Diffractive Imaging (BCDI), we investigate the discontinuous phase transformation in LixNi0.5Mn1.5O4within an operational Li metal coin cell. Throughout Li-intercalation, we directly observe the nucleation and growth of the Li-rich phase within the initially charged Li-poor phase in a 500 nm particle. Supported by the microelasticity model, the operando imaging unveils an evolution from a curved coherent to a planar semi-coherent interface driven by dislocation dynamics. Our data indicates negligible kinetic limitations from interface propagation impacting the transformation kinetics, even at a discharge rate of C/2 (80 mA/g). This study highlights BCDI’s capability to decode complex operando diffraction data, offering exciting opportunities to study nanoscale phase transformations with various stimuli. 
    more » « less
  2. Abstract Non‐equilibrium defects often dictate the macroscopic properties of materials. They largely define the reversibility and kinetics of processes in intercalation hosts in rechargeable batteries. Recently, imaging methods have demonstrated that transient dislocations briefly appear in intercalation hosts during ion diffusion. Despite new discoveries, the understanding of impact, formation and self‐healing mechanisms of transient defects, including and beyond dislocations, is lacking. Here, operando X‐ray Bragg Coherent Diffractive Imaging (BCDI) and diffraction peak analysis capture the stages of formation of a unique metastable domain boundary, defect self‐healing, and resolve the local impact of defects on ionic diffusion in NaxNi1−yMnyO2intercalation hosts in a charging sodium‐ion battery. Results, applicable to a wide range of layered intercalation materials due to the shared nature of framework layers, elucidate new dynamics of transient defects and their connection to macroscopic properties, and suggest how to control the nanostructure dynamics. 
    more » « less
  3. Abstract A gas‐phase approach to form Zn coordination sites on metal–organic frameworks (MOFs) by vapor‐phase infiltration (VPI) was developed. Compared to Zn sites synthesized by the solution‐phase method, VPI samples revealed approximately 2.8 % internal strain. Faradaic efficiency towards conversion of CO2to CO was enhanced by up to a factor of four, and the initial potential was positively shifted by 200–300 mV. Using element‐specific X‐ray absorption spectroscopy, the local coordination environment of the Zn center was determined to have square‐pyramidal geometry with four Zn−N bonds in the equatorial plane and one Zn‐OH2bond in the axial plane. The fine‐tuned internal strain was further supported by monitoring changes in XRD and UV/Visible absorption spectra across a range of infiltration cycles. The ability to use internal strain to increase catalytic activity of MOFs suggests that applying this strategy will enhance intrinsic catalytic capabilities of a variety of porous materials. 
    more » « less
  4. Abstract A gas‐phase approach to form Zn coordination sites on metal–organic frameworks (MOFs) by vapor‐phase infiltration (VPI) was developed. Compared to Zn sites synthesized by the solution‐phase method, VPI samples revealed approximately 2.8 % internal strain. Faradaic efficiency towards conversion of CO2to CO was enhanced by up to a factor of four, and the initial potential was positively shifted by 200–300 mV. Using element‐specific X‐ray absorption spectroscopy, the local coordination environment of the Zn center was determined to have square‐pyramidal geometry with four Zn−N bonds in the equatorial plane and one Zn‐OH2bond in the axial plane. The fine‐tuned internal strain was further supported by monitoring changes in XRD and UV/Visible absorption spectra across a range of infiltration cycles. The ability to use internal strain to increase catalytic activity of MOFs suggests that applying this strategy will enhance intrinsic catalytic capabilities of a variety of porous materials. 
    more » « less
  5. Abstract The complex structure of the catalytic active phase, and surface‐gas reaction networks have hindered understanding of the oxidative coupling of methane (OCM) reaction mechanism by supported Na2WO4/SiO2catalysts. The present study demonstrates, with the aid of in situ Raman spectroscopy and chemical probe (H2‐TPR, TAP and steady‐state kinetics) experiments, that the long speculated crystalline Na2WO4active phase is unstable and melts under OCM reaction conditions, partially transforming to thermally stable surface Na‐WOxsites. Kinetic analysis via temporal analysis of products (TAP) and steady‐state OCM reaction studies demonstrate that (i) surface Na‐WOxsites are responsible for selectively activating CH4to C2Hxand over‐oxidizing CHyto CO and (ii) molten Na2WO4phase is mainly responsible for over‐oxidation of CH4to CO2and also assists in oxidative dehydrogenation of C2H6to C2H4. These new insights reveal the nature of catalytic active sites and resolve the OCM reaction mechanism over supported Na2WO4/SiO2catalysts. 
    more » « less