Maximum-likelihood (ML) decoding of tail-biting convolutional codes (TBCCs) with S=2v states traditionally requires a separate S-state trellis for each of the S possible starting/ending states, resulting in complexity proportional to S2. Lower-complexity ML decoders for TBCCs have complexity proportional to S log S. This high complexity motivates the use of the wrap-around Viterbi algorithm, which sacrifices ML performance for complexity proportional to S.This paper presents an ML decoder for TBCCs that uses list decoding to achieve an average complexity proportional to S at operational signal-to-noise ratios where the expected list size is close to one. The new decoder uses parallel list Viterbi decoding with a progressively growing list size operating on a single S-state trellis. Decoding does not terminate until the most likely tailbiting codeword has been identified. This approach is extended to ML decoding of tail-biting convolutional codes concatenated with a cyclic redundancy check code as explored recently by Yang et al. and King et al. Constraining the maximum list size further reduces complexity but sacrifices guaranteed ML performance, increasing errors and introducing erasures.
more »
« less
This content will become publicly available on August 18, 2026
Syndrome Sphere Decoding of Linearly Expurgated Tail-Biting Convolutional Codes
This paper proposes a syndrome sphere decoding (SSD) algorithm. SSD achieves the frame error rate (FER) of maximum likelihood (ML) decoding for a tail-biting convolutional code (TBCC) concatenated with an expurgating linear function (ELF) with significantly lower average and maximum decoding complexity than serial list Viterbi decoding (SLVD). SSD begins by using a Viterbi decoder to find the closest trellis path, which may not be tail-biting and may not satisfy the ELF. This trellis path has a syndrome comprised of the difference between the received ELF and the ELF computed from the received message and the difference between the beginning and ending state of the trellis path. This syndrome is used to find all valid tail-biting codewords that satisfy the ELF constraint and lie within a specified distance from the closest trellis path. The proposed algorithm avoids the complexity of SLVD at the cost of a large table containing all the offsets needed for each syndrome. A hybrid decoder combines SSD and SLVD with a fixed maximum list size, balancing the maximum list size for SLVD against the size of the SSD offset table.
more »
« less
- Award ID(s):
- 2008918
- PAR ID:
- 10638480
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 979-8-3315-8983-7
- Page Range / eLocation ID:
- 1 to 5
- Subject(s) / Keyword(s):
- convolutional codes list decoding expurgation expurgating linear function sphere decoding syndrome decoding Viterbi decoding
- Format(s):
- Medium: X
- Location:
- Los Angeles, California
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In the short blocklength regime, serial list decoding of tail-biting (TB) convolutional codes concatenated with an expurgating linear function (ELF) can approach the random coding union bound on frame error rate (FER) performance. Decoding complexity for a particular received word depends on how deep in the list the decoder must search to find a valid TB-ELF codeword. The average list size is close to one at low-FER operating points such as 10^−6, and serial list decoding provides a favorable average complexity compared to other decoders with similar performance for these cases. However, the average list size can be on the order of a hundred or a thousand at higher, but still practically important, FER operating points such as 10−3. It is useful to study the tradeoff between how deep the decoder is willing to search and the proximity to the frame error rate (FER) achieved by an ML decoder. Often, this tradeoff is framed in terms of a maximum list depth. However, this paper frames the tradeoff in terms of a maximum allowable metric between the received word and the trellis paths on the list. We consider metrics of Euclidean distance and angle. This new approach draws on the wealth of existing literature on bounded-metric decoding to provide characterizations of how the choice of maximum allowable metric controls the tradeoffs between FER performance and both decoding complexity and undetected error rate. These characterizations lead to an example of an ELF-TB convolutional code that outperforms recent results for polar codes in terms of the lowest SNR that simultaneously achieves both a total error rate less than T = 10^−3 and an undetected error rate below U = 10^−5.more » « less
-
With a sufficiently large list size, the serial list Viterbi algorithm (S-LVA) provides maximum likelihood (ML) decoding of a concatenated convolutional code (CC) and an expurgating linear function (ELF), which is similar in function to a cyclic redundancy check (CRC), but doesn't enforce that the code be cyclic. However, S-LVA with a large list size requires considerable complexity. This paper exploits linearity to reduce decoding complexity for tail-biting CCs (TBCCs) concatenated with ELFs.more » « less
-
Convolutional codes have been widely studied and used in many systems. As the number of memory elements increases, frame error rate (FER) improves but computational complexity increases exponentially. Recently, decoders that achieve reduced average complexity through list decoding have been demonstrated when the convolutional encoder polynomials share a common factor that can be understood as a CRC or more generally an expurgating linear function (ELF). However, classical convolutional codes avoid such common factors because they result in a catastrophic encoder. This paper provides a way to access the complexity reduction possible with list decoding even when the convolutional encoder polynomials do not share a common factor. Decomposing the original code into component encoders that fully exclude some polynomials can allow an ELF to be factored from each component. Dual list decoding of the component encoders can often find the ML codeword. Including a fallback to regular Viterbi decoding yields excellent FER performance while requiring less average complexity than always performing Viterbi on the original trellis. A best effort dual list decoder that avoids Viterbi has performance similar to the ML decoder. Component encoders that have a shared polynomial allow for even greater complexity reduction.more » « less
-
Convolutional codes are widely used in many applications. The encoders can be implemented with a simple circuit. Decoding is often accomplished by the Viterbi algorithm or the maximum a-posteriori decoder of Bahl et al. These algorithms are sequential in nature, requiring a decoding time proportional to the message length. For low latency applications this this latency might be problematic. This paper introduces a low-latency decoder for tail-biting convolutional codes TBCCs that processes multiple trellis stages in parallel. The new decoder is designed for hardware with parallel processing capabilities. The overall decoding latency is proportional to the log of the message length. The new decoding architecture is modified into a list decoder, and the list decoding performance can be enhanced by exploiting linearity to expand the search space. Certain modifications to standard TBCCs are supported by the new architecture and improve frame error rate performance.more » « less
An official website of the United States government
