Convolutional codes are widely used in many applications. The encoders can be implemented with a simple circuit. Decoding is often accomplished by the Viterbi algorithm or the maximum a-posteriori decoder of Bahl et al. These algorithms are sequential in nature, requiring a decoding time proportional to the message length. For low latency applications this this latency might be problematic. This paper introduces a low-latency decoder for tail-biting convolutional codes TBCCs that processes multiple trellis stages in parallel. The new decoder is designed for hardware with parallel processing capabilities. The overall decoding latency is proportional to the log of the message length. The new decoding architecture is modified into a list decoder, and the list decoding performance can be enhanced by exploiting linearity to expand the search space. Certain modifications to standard TBCCs are supported by the new architecture and improve frame error rate performance.
more »
« less
Efficient Maximum-Likelihood Decoding for TBCC and CRC-TBCC Codes via Parallel List Viterbi
Maximum-likelihood (ML) decoding of tail-biting convolutional codes (TBCCs) with S=2v states traditionally requires a separate S-state trellis for each of the S possible starting/ending states, resulting in complexity proportional to S2. Lower-complexity ML decoders for TBCCs have complexity proportional to S log S. This high complexity motivates the use of the wrap-around Viterbi algorithm, which sacrifices ML performance for complexity proportional to S.This paper presents an ML decoder for TBCCs that uses list decoding to achieve an average complexity proportional to S at operational signal-to-noise ratios where the expected list size is close to one. The new decoder uses parallel list Viterbi decoding with a progressively growing list size operating on a single S-state trellis. Decoding does not terminate until the most likely tailbiting codeword has been identified. This approach is extended to ML decoding of tail-biting convolutional codes concatenated with a cyclic redundancy check code as explored recently by Yang et al. and King et al. Constraining the maximum list size further reduces complexity but sacrifices guaranteed ML performance, increasing errors and introducing erasures.
more »
« less
- Award ID(s):
- 2008918
- PAR ID:
- 10510788
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 979-8-3503-2611-6
- Page Range / eLocation ID:
- 1 to 5
- Subject(s) / Keyword(s):
- Tail-Biting Convolutional Codes, Convolutional Codes, Cyclic Redundancy Check, List Viterbi Decoding, List Decoding
- Format(s):
- Medium: X
- Location:
- Brest, France
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper proposes a syndrome sphere decoding (SSD) algorithm. SSD achieves the frame error rate (FER) of maximum likelihood (ML) decoding for a tail-biting convolutional code (TBCC) concatenated with an expurgating linear function (ELF) with significantly lower average and maximum decoding complexity than serial list Viterbi decoding (SLVD). SSD begins by using a Viterbi decoder to find the closest trellis path, which may not be tail-biting and may not satisfy the ELF. This trellis path has a syndrome comprised of the difference between the received ELF and the ELF computed from the received message and the difference between the beginning and ending state of the trellis path. This syndrome is used to find all valid tail-biting codewords that satisfy the ELF constraint and lie within a specified distance from the closest trellis path. The proposed algorithm avoids the complexity of SLVD at the cost of a large table containing all the offsets needed for each syndrome. A hybrid decoder combines SSD and SLVD with a fixed maximum list size, balancing the maximum list size for SLVD against the size of the SSD offset table.more » « less
-
Recently, rate-1/ω zero-terminated and tail-biting convolutional codes (ZTCCs and TBCCs) with cyclic-redundancy-check (CRC)-aided list decoding have been shown to closely approach the random-coding union (RCU) bound for short blocklengths. This paper designs CRCs for rate-(ω−1)/ω CCs with short blocklengths, considering both the ZT and TB cases. The CRC design seeks to optimize the frame error rate (FER) performance of the code resulting from the concatenation of the CRC and the CC. Utilization of the dual trellis proposed by Yamada et al. lowers the complexity of CRC-aided serial list Viterbi decoding (SLVD) of ZTCCs and TBCCs. CRC-aided SLVD of the TBCCs closely approaches the RCU bound at a blocklength of 128.more » « less
-
Tal, Ido (Ed.)Recently, rate-1/ n zero-terminated (ZT) and tail-biting (TB) convolutional codes (CCs) with cyclic redundancy check (CRC)-aided list decoding have been shown to closely approach the random-coding union (RCU) bound for short blocklengths. This paper designs CRC polynomials for rate-( n - 1)/ n ZT and TB CCs with short blocklengths. This paper considers both standard rate-( n -1)/ n CC polynomials and rate-( n - 1)/ n designs resulting from puncturing a rate-1/2 code. The CRC polynomials are chosen to maximize the minimum distance d min and minimize the number of nearest neighbors A dmin . For the standard rate-( n - 1)/ n codes, utilization of the dual trellis proposed by Yamada et al . lowers the complexity of CRC-aided serial list Viterbi decoding (SLVD). CRC-aided SLVD of the TBCCs closely approaches the RCU bound at a blocklength of 128. This paper compares the FER performance (gap to the RCU bound) and complexity of the CRC-aided standard and punctured ZTCCs and TBCCs. This paper also explores the complexity-performance trade-off for three TBCC decoders: a single-trellis approach, a multi-trellis approach, and a modified single-trellis approach with pre-processing using the wrap around Viterbi algorithm.more » « less
-
With a sufficiently large list size, the serial list Viterbi algorithm (S-LVA) provides maximum likelihood (ML) decoding of a concatenated convolutional code (CC) and an expurgating linear function (ELF), which is similar in function to a cyclic redundancy check (CRC), but doesn't enforce that the code be cyclic. However, S-LVA with a large list size requires considerable complexity. This paper exploits linearity to reduce decoding complexity for tail-biting CCs (TBCCs) concatenated with ELFs.more » « less
An official website of the United States government
