skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Student Uncertainty as a Pedagogical Resource [SUPeR]: Using the SUPeR Approach to Investigate Electromagnetic Force
Award ID(s):
2100879
PAR ID:
10638531
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
NSTA
Date Published:
Journal Name:
Science Scope
Volume:
46
Issue:
7
ISSN:
0887-2376
Page Range / eLocation ID:
24 to 31
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Multiple known algorithmic paradigms (backtracking, local search and the polynomial method) only yield a 2n(1-1/O(k)) time algorithm for k-SAT in the worst case. For this reason, it has been hypothesized that the worst-case k-SAT problem cannot be solved in 2n(1-f(k)/k) time for any unbounded function f. This hypothesis has been called the "Super-Strong ETH", modelled after the ETH and the Strong ETH. It has also been hypothesized that k-SAT is hard to solve for randomly chosen instances near the "critical threshold", where the clause-to-variable ratio is such that randomly chosen instances are satisfiable with probability 1/2. We give a randomized algorithm which refutes the Super-Strong ETH for the case of random k-SAT and planted k-SAT for any clause-to-variable ratio. For example, given any random k-SAT instance F with n variables and m clauses, our algorithm decides satisfiability for F in  2n(1-c*log(k)/k) time with high probability (over the choice of the formula and the randomness of the algorithm). It turns out that a well-known algorithm from the literature on SAT algorithms does the job: the PPZ algorithm of Paturi, Pudlak, and Zane (1999).   The Unique k-SAT problem is the special case where there is at most one satisfying assignment. Improving prior reductions, we show that the Super-Strong ETHs for Unique k-SAT and k-SAT are equivalent. More precisely, we show the time complexities of Unique k-SAT and k-SAT are very tightly correlated: if Unique k-SAT is in  2n(1-f(k)/k) time for an unbounded f, then k-SAT is in 2n(1-f(k)/(2k)) time. 
    more » « less
  2. null (Ed.)
    Abstract Improved optical control of molecular quantum states promises new applications including chemistry in the quantum regime, precision tests of fundamental physics, and quantum information processing. While much work has sought to prepare ground state molecules, excited states are also of interest. Here, we demonstrate a broadband optical approach to pump trapped SiO + molecules into pure super rotor ensembles maintained for many minutes. Super rotor ensembles pumped up to rotational state N  = 67, corresponding to the peak of a 9400 K distribution, had a narrow N spread comparable to that of a few-kelvin sample, and were used for spectroscopy of the previously unobserved C 2 Π state. Significant centrifugal distortion of super rotors pumped up to N  = 230 allowed probing electronic structure of SiO + stretched far from its equilibrium bond length. 
    more » « less
  3. A bstract We introduce Super-Resonant Dark Matter , a model of self-interacting dark matter based on the low energy effective theory of supersymmetric QCD. The structure of the theory ensures a resonant enhancement of the self-interactions of the low energy mesons, since their mass ratio is set by the number of colors and flavors. The velocity dependence of the resonantly enhanced self-interactions allows such theories to accommodate puzzles in small scale structure that arise from dark matter halos of different sizes. The dark matter mass is then predicted to be around 3–4 MeV, with its abundance set by freeze-in via a kinetically mixed dark photon. 
    more » « less