skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Super-resonant dark matter
A bstract We introduce Super-Resonant Dark Matter , a model of self-interacting dark matter based on the low energy effective theory of supersymmetric QCD. The structure of the theory ensures a resonant enhancement of the self-interactions of the low energy mesons, since their mass ratio is set by the number of colors and flavors. The velocity dependence of the resonantly enhanced self-interactions allows such theories to accommodate puzzles in small scale structure that arise from dark matter halos of different sizes. The dark matter mass is then predicted to be around 3–4 MeV, with its abundance set by freeze-in via a kinetically mixed dark photon.  more » « less
Award ID(s):
2210390
PAR ID:
10445489
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2022
Issue:
11
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Self-interacting dark matter (SIDM) models offer one way to reconcile inconsistencies between observations and predictions from collisionless cold dark matter (CDM) models on dwarf-galaxy scales. In order to incorporate the effects of both baryonic and SIDM interactions, we study a suite of cosmological-baryonic simulations of Milky-Way (MW)-mass galaxies from the Feedback in Realistic Environments (FIRE-2) project where we vary the SIDM self-interaction cross-section σ/m. We compare the shape of the main dark matter (DM) halo at redshift z = 0 predicted by SIDM simulations (at σ/m = 0.1, 1, and 10 cm2 g−1) with CDM simulations using the same initial conditions. In the presence of baryonic feedback effects, we find that SIDM models do not produce the large differences in the inner structure of MW-mass galaxies predicted by SIDM-only models. However, we do find that the radius where the shape of the total mass distribution begins to differ from that of the stellar mass distribution is dependent on σ/m. This transition could potentially be used to set limits on the SIDM cross-section in the MW. 
    more » « less
  2. null (Ed.)
    ABSTRACT We present the first set of cosmological baryonic zoom-in simulations of galaxies including dissipative self-interacting dark matter (dSIDM). These simulations utilize the Feedback In Realistic Environments galaxy formation physics, but allow the dark matter to have dissipative self-interactions analogous to standard model forces, parametrized by the self-interaction cross-section per unit mass, (σ/m), and the dimensionless degree of dissipation, 0 < fdiss < 1. We survey this parameter space, including constant and velocity-dependent cross-sections, and focus on structural and kinematic properties of dwarf galaxies with $$M_{\rm halo} \sim 10^{10-11}{\, \rm M_\odot }$$ and $$M_{\ast } \sim 10^{5-8}{\, \rm M_\odot }$$. Central density profiles (parametrized as ρ ∝ rα) of simulated dwarfs become cuspy when $$(\sigma /m)_{\rm eff} \gtrsim 0.1\, {\rm cm^{2}\, g^{-1}}$$ (and fdiss = 0.5 as fiducial). The power-law slopes asymptote to α ≈ −1.5 in low-mass dwarfs independent of cross-section, which arises from a dark matter ‘cooling flow’. Through comparisons with dark matter only simulations, we find the profile in this regime is insensitive to the inclusion of baryons. However, when $$(\sigma /m)_{\rm eff} \ll 0.1\, {\rm cm^{2}\, g^{-1}}$$, baryonic effects can produce cored density profiles comparable to non-dissipative cold dark matter (CDM) runs but at smaller radii. Simulated galaxies with $$(\sigma /m) \gtrsim 10\, {\rm cm^{2}\, g^{-1}}$$ and the fiducial fdiss develop significant coherent rotation of dark matter, accompanied by halo deformation, but this is unlike the well-defined thin ‘dark discs’ often attributed to baryon-like dSIDM. The density profiles in this high cross-section model exhibit lower normalizations given the onset of halo deformation. For our surveyed dSIDM parameters, halo masses and galaxy stellar masses do not show appreciable difference from CDM, but dark matter kinematics and halo concentrations/shapes can differ. 
    more » « less
  3. ABSTRACT Fuzzy dark matter (FDM), comprised of ultralight ($$m \sim 10^{-22}\,{\rm eV}$$) boson particles, has received significant attention as a viable alternative to cold dark matter (CDM), as it approximates CDM on large scales ($${\gtrsim}1$$ Mpc) while potentially resolving some of its small-scale problems via kiloparsec-scale quantum interference. However, the most basic FDM model, with one free parameter (the boson mass), is subject to a tension: small boson masses yield the desired cores of dwarf galaxies but underpredict structure in the Lyman-α forest, while large boson masses render FDM effectively identical to CDM. This Catch-22 problem may be alleviated by considering an axion-like particle with attractive particle self-interactions. We simulate an idealized FDM halo with self-interactions parametrized by an energy decay constant $$f \sim 10^{15}~\rm {GeV}$$ related to the axion symmetry-breaking conjectured to solve the strong-CP problem in particle physics. We observe solitons, a hallmark of FDM, condensing within a broader halo envelope, and find that the density profile and soliton mass depend on self-interaction strength. We propose generalized formulae to extend those from previous works to include self-interactions. We also investigate a critical mass threshold predicted for strong interactions at which the soliton collapses into a compact, unresolved state. We find that the collapse happens quickly, and its effects are initially contained to the central region of the halo. 
    more » « less
  4. A bstract We consider theories in which a dark sector is described by a Conformal Field Theory (CFT) over a broad range of energy scales. A coupling of the dark sector to the Standard Model breaks conformal invariance. While weak at high energies, the breaking grows in the infrared, and at a certain energy scale the theory enters a confined (hadronic) phase. One of the hadronic excitations can play the role of dark matter. We study a “Conformal Freeze-In” cosmological scenario, in which the dark sector is populated through its interactions with the SM at temperatures when it is conformal. In this scenario, the dark matter relic density is determined by the CFT data, such as the dimension of the CFT operator coupled to the Standard Model. We show that this simple and highly predictive model of dark matter is phenomenologically viable. The observed relic density is reproduced for a variety of SM operators (“portals”) coupled to the CFT, and the resulting models are consistent with observational constraints. The mass of the COFI dark matter candidate is predicted to be in the keV-MeV range. 
    more » « less
  5. A<sc>bstract</sc> We study the phenomenology of superheavy decaying dark matter with mass around 1010GeV which can arise in the low-energy limit of string compactifications. Generic features of string theory setups (such as high scale supersymmetry breaking and epochs of early matter domination driven by string moduli) can accommodate superheavy dark matter with the correct relic abundance. In addition, stringy instantons induce tinyR-parity violating couplings which make dark matter unstable with a lifetime well above the age of the Universe. Adopting a model-independent approach, we compute the flux and spectrum of high-energy gamma rays and neutrinos from three-body decays of superheavy dark matter and constrain its mass-lifetime plane with current observations and future experiments. We show that these bounds have only a mild dependence on the exact nature of neutralino dark matter and its decay channels. Applying these constraints to an explicit string model sets an upper bound of$$ \mathcal{O} $$ O (0.1) on the string coupling, ensuring that the effective field theory is in the perturbative regime. 
    more » « less