skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 4, 2025

Title: Excitons and polaritons in two-dimensional transition metal dichalcogenides: a tutorial
Since the discovery of two-dimensional transition metal dichalcogenide monolayers as direct bandgap semiconductors with pronounced room-temperature exciton transitions, research on excitons and polaritons in these materials has exploded worldwide. Here, we give an introductory tutorial on the basic properties of excitons and polaritons in these materials, emphasizing how they are different from those in conventional semiconductors, and discuss some of the most exciting new phenomena reported.  more » « less
Award ID(s):
2004287
PAR ID:
10638671
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Optica
Date Published:
Journal Name:
Advances in Optics and Photonics
Volume:
16
Issue:
4
ISSN:
1943-8206
Page Range / eLocation ID:
1064
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Transport of elementary excitations is a fundamental property of two-dimensional (2D) semiconductors, essential for wide-ranging phenomena and device applications. Although exciton transport reported in 2D materials barely exceeds 1 to 2 micrometers, coherent coupling of excitons with photons to form polaritons enables extended transport lengths and offers opportunities to use photonic mode engineering for tailored transport. Conventional vertical cavity or waveguide polaritons, however, are challenging to tune and integrate into photonic circuits. We report the transport of transition metal dichalcogenide polaritons in 2D photonic crystals that are highly versatile for tuning, mode engineering, and integration. We achieve an order-of-magnitude enhancement in transport length compared to bare excitons and reveal transport dependence on polariton dispersion and population dynamics, which are controlled via photonic crystal design and pump intensity. Stimulated relaxation observed in the system suggests the potential for forming superfluid polaritons with frictionless transport. These findings establish 2D photonic crystal polaritons as a versatile platform for advancing photonic energy transport technologies. 
    more » « less
  2. Abstract Polaritons are quasiparticles originating from strong interactions between photons and elementary excitations that could enable high tunability, tight electromagnetic field confinement, and large density of photonic states, making it possible to achieve novel and otherwise inaccessible functionalities. For these reasons, polaritons spawn great interest in the fields of physics, materials science, and optics for both fundamental studies as well as potential applications (e.g., modulators, photodetectors, photoluminescence, etc.). In recent years, the explosive growth of research in graphene and other 2D van der Waals materials is witnessed because they provide a new platform that substantially complements conventional metals, dielectrics, and semiconductors to investigate different polariton modes. This review highlights the works published in recent years on the topic of polariton photonics based on structured metals, graphene, and transition‐metal dichalcogenides (TMDs). The exotic optical properties of the polaritons in metallic structures and 2D van der Waals materials offer bright prospects for the development of high‐performance photonic and optoelectronic devices. 
    more » « less
  3. Abstract Spectrally narrow optical resonances can be used to generate slow light, i.e., a large reduction in the group velocity. In a previous work, we developed hybrid 2D semiconductor plasmonic structures, which consist of propagating optical frequency surface-plasmon polaritons interacting with excitons in a semiconductor monolayer. Here, we use coupled exciton-surface plasmon polaritons (E-SPPs) in monolayer WSe 2 to demonstrate slow light with a 1300 fold decrease of the SPP group velocity. Specifically, we use a high resolution two-color laser technique where the nonlinear E-SPP response gives rise to ultra-narrow coherent population oscillation (CPO) resonances, resulting in a group velocity on order of 10 5  m/s. Our work paves the way toward on-chip actively switched delay lines and optical buffers that utilize 2D semiconductors as active elements. 
    more » « less
  4. Abstract Realizing nonlinear optical response in the low photon density limit in solid-state systems has been a long-standing challenge. Semiconductor microcavities in the strong coupling regime hosting exciton-polaritons have emerged as attractive candidates in this context. However, the weak interaction between these quasiparticles has been a hurdle in this quest. Dipolar excitons provide an attractive strategy to overcome this limitation but are often hindered by their weak oscillator strength. The interlayer dipolar excitons in naturally occurring homobilayer MoS 2 alleviates this issue owing to their formation via hybridization of interlayer charge transfer exciton with intralayer B exciton. Here we demonstrate the formation of dipolar exciton polaritons in bilayer MoS 2 resulting in unprecedented nonlinear interaction strengths. A ten-fold increase in nonlinearity is observed for the interlayer dipolar excitons compared to the conventional A excitons. These highly nonlinear dipolar polaritons will likely be a frontrunner in the quest for solid-state quantum nonlinear devices. 
    more » « less
  5. Resolving momentum degrees of freedom of excitons, which are electron-hole pairs bound by the Coulomb attraction in a photoexcited semiconductor, has remained an elusive goal for decades. In atomically thin semiconductors, such a capability could probe the momentum-forbidden dark excitons, which critically affect proposed opto-electronic technologies but are not directly accessible using optical techniques. Here, we probed the momentum state of excitons in a tungsten diselenide monolayer by photoemitting their constituent electrons and resolving them in time, momentum, and energy. We obtained a direct visual of the momentum-forbidden dark excitons and studied their properties, including their near degeneracy with bright excitons and their formation pathways in the energy-momentum landscape. These dark excitons dominated the excited-state distribution, a surprising finding that highlights their importance in atomically thin semiconductors. 
    more » « less