Recent advances in retinal neuroscience have fueled various hardware and algorithmic efforts to develop retina- inspired solutions for computer vision tasks. In this work, we focus on a fundamental visual feature within the mammalian retina, Object Motion Sensitivity (OMS). Using DVS data from EV-IMO dataset, we analyze the performance of an algorithmic implementation of OMS circuitry for motion segmentation in presence of ego-motion. This holistic analysis considers the underlying constraints arising from the hardware circuit implementation. We present novel CMOS circuits that implement OMS functionality inside image sensors, while providing run-time re-configurability for key algorithmic parameters. In-sensor technologies for dynamical environment adaptation are crucial for ensuring high system performance. Finally, we verify the functionality and re-configurability of the proposed CMOS circuit designs through Cadence simulations in 180nm technology. In summary, the presented work lays foundation for hardware- algorithm re-engineering of known biological circuits to suit application needs.
more »
« less
This content will become publicly available on March 25, 2026
Retina-inspired Object Motion Segmentation for Event-Cameras
Event-cameras have emerged as a revolutionary technology with a high temporal resolution that far surpasses standard active pixel cameras. This technology draws biological inspiration from photoreceptors and the initial retinal synapse. This research showcases the potential of additional retinal functionalities to extract visual features. We provide a domain-agnostic and efficient algorithm for ego-motion compensation based on Object Motion Sensitivity (OMS), one of the multiple features computed within the mammalian retina. We develop a method based on experimental neuroscience that translates OMS’ biological circuitry to a low-overhead algorithm to suppress camera motion bypassing the need for deep networks and learning. Our system processes event data from dynamic scenes to perform pixel-wise object motion segmentation using a real and synthetic dataset. This paper introduces a bio-inspired computer vision method that dramatically reduces the number of parameters by 10^3 to 10^6 orders of magnitude compared to previous approaches. Our work paves the way for robust, high-speed, and low-bandwidth decision-making for in-sensor computations.
more »
« less
- Award ID(s):
- 2319619
- PAR ID:
- 10638728
- Publisher / Repository:
- IEEE
- Date Published:
- Page Range / eLocation ID:
- 1 to 6
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Event-based cameras have been designed for scene motion perception - their high temporal resolution and spatial data sparsity converts the scene into a volume of boundary trajectories and allows to track and analyze the evolution of the scene in time. Analyzing this data is computationally expensive, and there is substantial lack of theory on dense-in-time object motion to guide the development of new algorithms; hence, many works resort to a simple solution of discretizing the event stream and converting it to classical pixel maps, which allows for application of conventional image processing methods. In this work we present a Graph Convolutional neural network for the task of scene motion segmentation by a moving camera. We convert the event stream into a 3D graph in (x,y,t) space and keep per-event temporal information. The difficulty of the task stems from the fact that unlike in metric space, the shape of an object in (x,y,t) space depends on its motion and is not the same across the dataset. We discuss properties of of the event data with respect to this 3D recognition problem, and show that our Graph Convolutional architecture is superior to PointNet++. We evaluate our method on the state of the art event-based motion segmentation dataset - EV-IMO and perform comparisons to a frame-based method proposed by its authors. Our ablation studies show that increasing the event slice width improves the accuracy, and how subsampling and edge configurations affect the network performance.more » « less
-
We present the first event-based learning approach for motion segmentation in indoor scenes and the first event-based dataset – EV-IMO – which includes accurate pixel-wise motion masks, egomotion and ground truth depth. Our approach is based on an efficient implementation of the SfM learning pipeline using a low parameter neural network architecture on event data. In addition to camera egomotion and a dense depth map, the network estimates independently moving object segmentation at the pixel-level and computes per-object 3D translational velocities of moving objects. We also train a shallow network with just 40k parameters, which is able to compute depth and egomotion. Our EV-IMO dataset features 32 minutes of indoor recording with up to 3 fast moving objects in the camera field of view. The objects and the camera are tracked using a VICON motion capture system. By 3D scanning the room and the objects, ground truth of the depth map and pixel-wise object masks are obtained. We then train and evaluate our learning pipeline on EV-IMO and demonstrate that it is well suited for scene constrained robotics applications.more » « less
-
Abstract The ability to predict motion in real time is fundamental to many maneuvering activities in animals, particularly those critical for survival, such as attack and escape responses. Given its significance, it is no surprise that motion prediction in animals begins in the retina. Similarly, autonomous systems utilizing computer vision could greatly benefit from the capability to predict motion in real time. Therefore, for computer vision applications, motion prediction should be integrated directly at the camera pixel level. Towards that end, we present a retina-inspired neuromorphic framework capable of performing real-time, energy-efficient MP directly within camera pixels. Our hardware-algorithm framework, implemented using GlobalFoundries’ 22nm FDSOI technology, integrates key retinal MP compute blocks, including a biphasic filter, spike adder, nonlinear circuit, and a 2D array for multi-directional motion prediction. Additionally, integrating the sensor and MP compute die using a 3D Cu-Cu hybrid bonding approach improves design compactness by minimizing area usage and simplifying routing complexity. Validated on real-world object stimuli, the model delivers efficient, low-latency MP for decision-making scenarios reliant on predictive visual computation, while consuming only 18.56 pJ/MP in our mixed-signal hardware implementation.more » « less
-
Sparse Coding Enables the Reconstruction of High-Fidelity Images and Video from Retinal Spike TrainsThe optic nerve transmits visual information to the brain as trains of discrete events, a low-power, low-bandwidth communication channel also exploited by silicon retina cameras. Extracting highfidelity visual input from retinal event trains is thus a key challenge for both computational neuroscience and neuromorphic engineering. Here, we investigate whether sparse coding can enable the reconstruction of high-fidelity images and video from retinal event trains. Our approach is analogous to compressive sensing, in which only a random subset of pixels are transmitted and the missing information is estimated via inference. We employed a variant of the Locally Competitive Algorithm to infer sparse representations from retinal event trains, using a dictionary of convolutional features optimized via stochastic gradient descent and trained in an unsupervised manner using a local Hebbian learning rule with momentum. We used an anatomically realistic retinal model with stochastic graded release from cones and bipolar cells to encode thumbnail images as spike trains arising from ON and OFF retinal ganglion cells. The spikes from each model ganglion cell were summed over a 32 msec time window, yielding a noisy rate-coded image. Analogous to how the primary visual cortex is postulated to infer features from noisy spike trains arising from the optic nerve, we inferred a higher-fidelity sparse reconstruction from the noisy rate-coded image using a convolutional dictionary trained on the original CIFAR10 database. To investigate whether a similar approachworks on non-stochastic data, we demonstrate that the same procedure can be used to reconstruct high-frequency video from the asynchronous events arising from a silicon retina camera moving through a laboratory environment.more » « less
An official website of the United States government
