Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
While machine learning (ML) models are becoming mainstream, including in critical application domains, concerns have been raised about the increasing risk of sensitive data leakage. Various privacy attacks, such as membership inference attacks (MIAs), have been developed to extract data from trained ML models, posing significant risks to data confidentiality. While the predominant work in the ML community considers traditional Artificial Neural Networks (ANNs) as the default neural model, neuromorphic architectures, such as Spiking Neural Networks (SNNs), have recently emerged as an attractive alternative mainly due to their significantly low power consumption. These architectures process information through discrete events, i.e., spikes, to mimic the functioning of biological neurons in the brain. While the privacy issues have been extensively investigated in the context of traditional ANNs, they remain largely unexplored in neuromorphic architectures, and little work has been dedicated to investigating their privacy-preserving properties. In this paper, we investigate the question of whether SNNs have inherent privacy-preserving advantages. Specifically, we investigate SNNs’ privacy properties through the lens of MIAs across diverse datasets, in comparison with ANNs. We explore the impact of different learning algorithms (surrogate gradient and evolutionary learning), programming frameworks (snnTorch, TENNLab, and LAVA), and various parameters on the resilience of SNNs against MIA. Our experiments reveal that SNNs demonstrate consistently superior privacy preservation compared to ANNs, with evolutionary algorithms further enhancing their resilience. For example, on the CIFAR-10 dataset, SNNs achieve an AUC as low as 0.59 compared to 0.82 for ANNs, and on CIFAR-100, SNNs maintain a low AUC of 0.58, whereas ANNs reach 0.88. Furthermore, we investigate the privacy-utility trade-off through Differentially Private Stochastic Gradient Descent (DPSGD), observing that SNNs incur a notably lower accuracy drop than ANNs under equivalent privacy constraints.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Event-cameras have emerged as a revolutionary technology with a high temporal resolution that far surpasses standard active pixel cameras. This technology draws biological inspiration from photoreceptors and the initial retinal synapse. This research showcases the potential of additional retinal functionalities to extract visual features. We provide a domain-agnostic and efficient algorithm for ego-motion compensation based on Object Motion Sensitivity (OMS), one of the multiple features computed within the mammalian retina. We develop a method based on experimental neuroscience that translates OMS’ biological circuitry to a low-overhead algorithm to suppress camera motion bypassing the need for deep networks and learning. Our system processes event data from dynamic scenes to perform pixel-wise object motion segmentation using a real and synthetic dataset. This paper introduces a bio-inspired computer vision method that dramatically reduces the number of parameters by 10^3 to 10^6 orders of magnitude compared to previous approaches. Our work paves the way for robust, high-speed, and low-bandwidth decision-making for in-sensor computations.more » « lessFree, publicly-accessible full text available March 25, 2026
-
Many of today’s most interesting questions involve understanding and interpreting complex relationships within graph-based structures. For instance, in materials science, predicting material properties often relies on analyzing the intricate network of atomic interactions. Graph neural networks (GNNs) have emerged as a popular approach for these tasks; however, they suffer from limitations such as inefficient hardware utilization and over-smoothing. Recent advancements in neuromorphic computing offer promising solutions to these challenges. In this work, we evaluate two such neuromorphic strategies known as reservoir computing and hyperdimensional computing. We compare the performance of both approaches for bandgap classification and regression using a subset of the Materials Project dataset. Our results indicate recent advances in hyperdimensional computing can be applied effectively to better represent molecular graphsmore » « less
-
In parallel with the continuously increasing parameter space dimensionality, search and optimization algorithms should support distributed parameter evaluations to reduce cumulative runtime. Intel’s neuromorphic optimization library, Lava-Optimization, was introduced as an abstract optimization system compatible with neuromorphic systems developed in the broader Lava software framework. In this work, we introduce Lava Multi-Agent Optimization (LMAO) with native support for distributed parameter evaluations communicating with a central Bayesian optimization system. LMAO provides an abstract framework for deploying distributed optimization and search algorithms within the Lava software framework. Moreover, LMAO introduces support for random and grid search along with process connections across multiple levels of mathematical precision. We evaluate the algorithmic performance of LMAO with a traditional non-convex optimization problem, a fixed-precision transductive spiking graph neural network for citation graph classification, and a neuromorphic satellite scheduling problem. Our results highlight LMAO’s efficient scaling to multiple processes, reducing cumulative runtime and minimizing the likelihood of converging to local optima.more » « less
-
Recent advances in retinal neuroscience have fueled various hardware and algorithmic efforts to develop retina- inspired solutions for computer vision tasks. In this work, we focus on a fundamental visual feature within the mammalian retina, Object Motion Sensitivity (OMS). Using DVS data from EV-IMO dataset, we analyze the performance of an algorithmic implementation of OMS circuitry for motion segmentation in presence of ego-motion. This holistic analysis considers the underlying constraints arising from the hardware circuit implementation. We present novel CMOS circuits that implement OMS functionality inside image sensors, while providing run-time re-configurability for key algorithmic parameters. In-sensor technologies for dynamical environment adaptation are crucial for ensuring high system performance. Finally, we verify the functionality and re-configurability of the proposed CMOS circuit designs through Cadence simulations in 180nm technology. In summary, the presented work lays foundation for hardware- algorithm re-engineering of known biological circuits to suit application needs.more » « less
An official website of the United States government
