skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 8, 2026

Title: TMModel: Modeling Texture Memory and Mobile GPU Performance to Accelerate DNN Computations
The demand for Deep Neural Network (DNN) execution (including both inference and training) on mobile system-on-a-chip (SoCs) has surged, driven by factors like the need for real-time latency, privacy, and reducing vendors’ costs. Mainstream mobile GPUs (e.g., Qualcomm Adreno GPUs) usually have a 2.5D L1 texture cache that offers throughput superior to that of on-chip memory. However, to date, there is limited understanding of the performance features of such a 2.5D cache, which limits the optimization potential. This paper introduces TMModel, a framework with three components: 1) a set of micro-benchmarks and a novel performance assessment methodology to characterize a non-well-documented architecture with 2D memory, 2) a complete analytical performance model configurable for different data access pattern(s), tiling size(s), and other GPU execution parameters for a given operator (and associated size and shape), and 3) a compilation framework incorporating this model and generating optimized code with low overhead. TMModel is validated both on a set of DNN kernels and for training complete models on a mobile GPU, and compared against both popular mobile DNN frameworks and another GPU performance model. Evaluation results demonstrate that TMModel outperforms all baselines, achieving 1.48 − 3.61× speedup on individual kernels and 1.83 − 66.1× speedup for end-to-end on-device training with only 0.25% − 18.5% the tuning cost of the baselines.  more » « less
Award ID(s):
2403088 2230944
PAR ID:
10638756
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
Page Range / eLocation ID:
205 to 220
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The demand for Deep Neural Network (DNN) execution (including both inference and training) on mobile system-ona-chip (SoCs) has surged, driven by factors like the need for real-time latency, privacy, and reducing vendors’ costs. Mainstream mobile GPUs (eg, Qualcomm Adreno GPUs) usually have a 2.5 D L1 texture cache that offers throughput superior to that of on-chip memory. However, to date, there is limited understanding of the performance features of such a 2.5 D cache, which limits the optimization potential. This paper introduces TMModel, a framework with three components: 1) a set of micro-benchmarks and a novel performance assessment methodology to characterize a non-well-documented architecture with 2D memory, 2) a complete analytical performance model configurable for different data access pattern (s), tiling size (s), and other GPU execution parameters for a given operator (and associated size and shape), and 3) a compilation framework incorporating this model and generating optimized code with low overhead. TMModel is validated both on a set of DNN kernels and for training complete models on mobile GPU. 
    more » « less
  2. The demand for Deep Neural Network (DNN) execution (including both inference and training) on mobile system-ona-chip (SoCs) has surged, driven by factors like the need for real-time latency, privacy, and reducing vendors’ costs. Mainstream mobile GPUs (eg, Qualcomm Adreno GPUs) usually have a 2.5 D L1 texture cache that offers throughput superior to that of on-chip memory. However, to date, there is limited understanding of the performance features of such a 2.5 D cache, which limits the optimization potential. This paper introduces TMModel, a framework with three components: 1) a set of micro-benchmarks and a novel performance assessment methodology to characterize a non-well-documented architecture with 2D memory, 2) a complete analytical performance model configurable for different data access pattern (s), tiling size (s), and other GPU execution parameters for a given operator (and associated size and shape), and 3) a compilation framework incorporating this model and generating optimized code with low overhead. TMModel is validated both on a set of DNN kernels and for training complete models on mobile GPU. 
    more » « less
  3. It is challenging to deploy 3D Convolutional Neural Networks (3D CNNs) on mobile devices, specifically if both real-time execution and high inference accuracy are in demand, because the increasingly large model size and complex model structure of 3D CNNs usually require tremendous computation and memory resources. Weight pruning is proposed to mitigate this challenge. However, existing pruning is either not compatible with modern parallel architectures, resulting in long inference latency or subject to significant accuracy degradation. This paper proposes an end-to-end 3D CNN acceleration framework based on pruning/compilation co-design called Mobile-3DCNN that consists of two parts: a novel, fine-grained structured pruning enhanced by a prune/Winograd adaptive selection (that is mobile-hardware-friendly and can achieve high pruning accuracy), and a set of compiler optimization and code generation techniques enabled by our pruning (to fully transform the pruning benefit to real performance gains). The evaluation demonstrates that Mobile-3DCNN outperforms state-of-the-art end-to-end DNN acceleration frameworks that support 3D CNN execution on mobile devices, Alibaba Mobile Neural Networks and Pytorch-Mobile with speedup up to 34 × with minor accuracy degradation, proving it is possible to execute high-accuracy large 3D CNNs on mobile devices in real-time (or even ultra-real-time). 
    more » « less
  4. Modern accelerators like GPUs increasingly execute independent operations concurrently to improve the device’s compute utilization. However, effectively harnessing it on GPUs for important primitives such as general matrix multiplications (GEMMs) remains challenging. Although modern GPUs have significant hardware and software GEMM support, their kernel implementations and optimizations typically assume each kernel executes inisolationand can utilize all GPU resources. This approach is highly efficient when kernels execute in isolation, but causes significant resource contention and slowdowns when kernels execute concurrently. Moreover, current approaches often onlystaticallyexpose and control parallelism within an application, without considering runtime information such as varying input size and concurrent applications – often exacerbating contention. These issues limit performance benefits from concurrently executing independent operations. Accordingly, we propose GOLDYLOC, which considers theglobalresources across all concurrent operations to identify performant GEMM kernels, which we call globally optimized (GO)-Kernels. GOLDYLOC also introduces a lightweight dynamic logic which considers thedynamicexecution environment for available parallelism and input sizes to execute performant combinations of concurrent GEMMs on the GPU. Overall, GOLDYLOC improves performance of concurrent GEMMs on a real GPU by up to 2 × (18% geomean per workload) versus the default concurrency approach and provides up to 2.5 × (43% geomean per workload) speedup over sequential execution. 
    more » « less
  5. null (Ed.)
    Contemporary GPUs support multiple kernels to run concurrently on the same streaming multiprocessors (SMs). Recent studies have demonstrated that such concurrent kernel execution (CKE) improves both resource utilization and computational throughput. Most of the prior works focus on partitioning the GPU resources at the cooperative thread array (CTA) level or the warp scheduler level to improve CKE. However, significant performance slowdown and unfairness are observed when latency-sensitive kernels co-run with bandwidth-intensive ones. The reason is that bandwidth over-subscription from bandwidth-intensive kernels leads to much aggravated memory access latency, which is highly detrimental to latency-sensitive kernels. Even among bandwidth-intensive kernels, more intensive kernels may unfairly consume much higher bandwidth than less-intensive ones. In this article, we first make a case that such problems cannot be sufficiently solved by managing CTA combinations alone and reveal the fundamental reasons. Then, we propose a coordinated approach for CTA combination and bandwidth partitioning. Our approach dynamically detects co-running kernels as latency sensitive or bandwidth intensive. As both the DRAM bandwidth and L2-to-L1 Network-on-Chip (NoC) bandwidth can be the critical resource, our approach partitions both bandwidth resources coordinately along with selecting proper CTA combinations. The key objective is to allocate more CTA resources for latency-sensitive kernels and more NoC/DRAM bandwidth resources to NoC-/DRAM-intensive kernels. We achieve it using a variation of dominant resource fairness (DRF). Compared with two state-of-the-art CKE optimization schemes, SMK [52] and WS [55], our approach improves the average harmonic speedup by 78% and 39%, respectively. Even compared to the best possible CTA combinations, which are obtained from an exhaustive search among all possible CTA combinations, our approach improves the harmonic speedup by up to 51% and 11% on average. 
    more » « less