skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 22, 2026

Title: Mobile-3DCNN: An Acceleration Framework for Ultra-Real-Time Execution of Large 3D CNNs on Mobile Devices
It is challenging to deploy 3D Convolutional Neural Networks (3D CNNs) on mobile devices, specifically if both real-time execution and high inference accuracy are in demand, because the increasingly large model size and complex model structure of 3D CNNs usually require tremendous computation and memory resources. Weight pruning is proposed to mitigate this challenge. However, existing pruning is either not compatible with modern parallel architectures, resulting in long inference latency or subject to significant accuracy degradation. This paper proposes an end-to-end 3D CNN acceleration framework based on pruning/compilation co-design called Mobile-3DCNN that consists of two parts: a novel, fine-grained structured pruning enhanced by a prune/Winograd adaptive selection (that is mobile-hardware-friendly and can achieve high pruning accuracy), and a set of compiler optimization and code generation techniques enabled by our pruning (to fully transform the pruning benefit to real performance gains). The evaluation demonstrates that Mobile-3DCNN outperforms state-of-the-art end-to-end DNN acceleration frameworks that support 3D CNN execution on mobile devices, Alibaba Mobile Neural Networks and Pytorch-Mobile with speedup up to 34 × with minor accuracy degradation, proving it is possible to execute high-accuracy large 3D CNNs on mobile devices in real-time (or even ultra-real-time).  more » « less
Award ID(s):
2047516 2428108 2403090 2403088
PAR ID:
10625086
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
ACM Transactions on Architecture and Code Optimization
ISSN:
1544-3566
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. It is appealing but challenging to achieve real-time deep neural network (DNN) inference on mobile devices because even the powerful modern mobile devices are considered “resource-constrained” when executing large-scale DNNs. It necessitates the sparse model inference via weight pruning, i.e., DNN weight sparsity, and it is desirable to design a new DNN weight sparsity scheme that can facilitate real-time inference on mobile devices while preserving a high sparse model accuracy. This paper designs a novel mobile inference acceleration framework GRIM that is General to both convolutional neural networks (CNNs) and recurrent neural networks (RNNs) and that achieves Real-time execution and high accuracy, leveraging fine-grained structured sparse model Inference and compiler optimizations for Mobiles. We start by proposing a new fine-grained structured sparsity scheme through the Block-based Column-Row (BCR) pruning. Based on this new fine-grained structured sparsity, our GRIM framework consists of two parts: (a) the compiler optimization and code generation for real-time mobile inference; and (b) the BCR pruning optimizations for determining pruning hyperparameters and performing weight pruning. We compare GRIM with Alibaba MNN, TVM, TensorFlow-Lite, a sparse implementation based on CSR, PatDNN, and ESE (a representative FPGA inference acceleration framework for RNNs), and achieve up to 14.08× speedup. 
    more » « less
  2. There have been many recent attempts to extend the successes of convolutional neural networks (CNNs) from 2-dimensional (2D) image classification to 3-dimensional (3D) video recognition by exploring 3D CNNs. Considering the emerging growth of mobile or Internet of Things (IoT) market, it is essential to investigate the deployment of 3D CNNs on edge devices. Previous works have implemented standard 3D CNNs (C3D) on hardware platforms, however, they have not exploited model compression for acceleration of inference. This work proposes a hardware-aware pruning approach that can fully adapt to the loop tiling technique of FPGA design and is applied onto a novel 3D network called R(2+1)D. Leveraging the powerful ADMM, the proposed pruning method achieves simultaneous high accuracy and significant acceleration of computation on FPGA. With layer-wise pruning rates up to 10× and negligible accuracy loss, the pruned model is implemented on a Xilinx ZCU102 FPGA board, where the pruned model achieves 2.6× speedup compared with the unpruned version, and 2.3× speedup and 2.3× power efficiency improvement compared with state-of-the-art FPGA implementation of C3D. 
    more » « less
  3. Weight pruning is an effective model compression technique to tackle the challenges of achieving real-time deep neural network (DNN) inference on mobile devices. However, prior pruning schemes have limited application scenarios due to accuracy degradation, difficulty in leveraging hardware acceleration, and/or restriction on certain types of DNN layers. In this article, we propose a general, fine-grained structured pruning scheme and corresponding compiler optimizations that are applicable to any type of DNN layer while achieving high accuracy and hardware inference performance. With the flexibility of applying different pruning schemes to different layers enabled by our compiler optimizations, we further probe into the new problem of determining the best-suited pruning scheme considering the different acceleration and accuracy performance of various pruning schemes. Two pruning scheme mapping methods—one -search based and the other is rule based—are proposed to automatically derive the best-suited pruning regularity and block size for each layer of any given DNN. Experimental results demonstrate that our pruning scheme mapping methods, together with the general fine-grained structured pruning scheme, outperform the state-of-the-art DNN optimization framework with up to 2.48 \( \times \) and 1.73 \( \times \) DNN inference acceleration on CIFAR-10 and ImageNet datasets without accuracy loss. 
    more » « less
  4. null (Ed.)
    The invention of Transformer model structure boosts the performance of Neural Machine Translation (NMT) tasks to an unprecedented level. Many previous works have been done to make the Transformer model more execution-friendly on resource-constrained platforms. These researches can be categorized into three key fields: Model Pruning, Transfer Learning, and Efficient Transformer Variants. The family of model pruning methods are popular for their simplicity in practice and promising compression rate and have achieved great success in the field of convolution neural networks (CNNs) for many vision tasks. Nonetheless, previous Transformer pruning works did not perform a thorough model analysis and evaluation on each Transformer component on off-the-shelf mobile devices. In this work, we analyze and prune transformer models at the line-wise granularity and also implement our pruning method on real mobile platforms. We explore the properties of all Transformer components as well as their sparsity features, which are leveraged to guide Transformer model pruning. We name our whole Transformer analysis and pruning pipeline as TPrune. In TPrune, we first propose Block-wise Structured Sparsity Learning (BSSL) to analyze Transformer model property. Then, based on the characters derived from BSSL, we apply Structured Hoyer Square (SHS) to derive the final pruned models. Comparing with the state-of-the-art Transformer pruning methods, TPrune is able to achieve a higher model compression rate with less performance degradation. Experimental results show that our pruned models achieve 1.16×–1.92× speedup on mobile devices with 0%–8% BLEU score degradation compared with the original Transformer model. 
    more » « less
  5. Convolutional neural networks (CNNs) are becoming increasingly deeper, wider, and non-linear because of the growing demand on prediction accuracy and analysis quality. The wide and deep CNNs, however, require a large amount of computing resources and processing time. Many previous works have studied model pruning to improve inference performance, but little work has been done for effectively reducing training cost. In this paper, we propose ClickTrain: an efficient and accurate end-to-end training and pruning framework for CNNs. Different from the existing pruning-during-training work, ClickTrain provides higher model accuracy and compression ratio via fine-grained architecture-preserving pruning. By leveraging pattern-based pruning with our proposed novel accurate weight importance estimation, dynamic pattern generation and selection, and compiler-assisted computation optimizations, ClickTrain generates highly accurate and fast pruned CNN models for direct deployment without any extra time overhead, compared with the baseline training. ClickTrain also reduces the end-to-end time cost of the pruning-after-training method by up to 2.3X with comparable accuracy and compression ratio. Moreover, compared with the state-of-the-art pruning-during-training approach, ClickTrain provides significant improvements both accuracy and compression ratio on the tested CNN models and datasets, under similar limited training time. 
    more » « less