Anthropogenic climate change is projected to affect marine ecosystems by challenging the environmental tolerance of individuals. Marine fishes may be particularly vulnerable to emergent climate stressors during early life stages. Here we focus on embryos of Pacific herring(Clupea pallasii), an important forage fish species widely distributed across the North Pacific. Embryos were reared under a range of temperatures (10-16°C) crossed with twopCO2levels (600 and 2000μatm) to investigate effects on metabolism and survival. We further tested how elevatedpCO2affects critical thermal tolerance (CTmax) by challenging embryos to short-term temperature fluctuations. Experiments were repeated on embryos collected from winter and spring spawning populations to determine if spawning phenology corresponds with different limits of environmental tolerance in offspring. We found that embryos could withstand acute exposure to 20°C regardless of spawning population or incubation treatment, but that survival was greatly reduced after 2-3 hours at 25°C. We found thatpCO2had limited effects onCTmax. The survival of embryos reared under chronically warm conditions (12°, 14°, or 16°C) was significantly lower relative to 10°C treatments in both populations. Oxygen consumption rates (MO2) were also higher at elevated temperatures andpCO2levels. However, heart contraction measurements made 48 hours afterCTmaxexposure revealed a greater increase in heart rate in embryos reared at 10°C compared to 16°C, suggesting acclimation at higher incubation temperatures. Our results indicate that Pacific herring are generally tolerant ofpCO2but are vulnerable to acute temperature stress. Importantly, spring-spawning embryos did not clearly exhibit a higher tolerance to heat stress compared to winter offspring.
more »
« less
This content will become publicly available on November 7, 2025
The Effects of Diatom-Derived Polyunsaturated Aldehydes on Embryonic and Larval Surf Smelt (Hypomesus pretiosus) Fitness.
Polyunsaturated aldehydes (PUAs) are secondary oxylipins produced by some diatoms. PUAs are produced at a greater rate when diatom cells are damaged, suggesting that they may act as chemical grazing deterrents. Past studies showed the deleterious effects of particulate PUAs on diatom consumers like copepods and marine invertebrates. However, to date, very few studies have explored the potential for diatom-derived PUAs to affect marine vertebrates, such as forage fishes. Forage fishes are a foundational functional group in marine ecosystems whose early life history stages are often sympatric with diatoms due to their nearshore spawning behavior and planktivorous diet. In this study, I addressed the question of whether PUAs detrimentally affect a common Salish Sea forage fish, the surf smelt (Hypomesus pretiosus; Girard 1854). The project focused on determining whether PUAs affect the development and physiology of surf smelt embryos and larvae. This was done by measuring survival and hatch success rates, embryonic heart rates, usage of endogenous energy reserves, and morphological features at hatch. Higher concentrations of PUAs resulted in higher mortality and lower hatch success rates of embryonic surf smelt. Embryonic heart rates were equivalent among treatments when embryos were exposed to PUAs soon after fertilization, suggesting that surf smelt embryos can acclimate to PUAs if exposed during early development. However, higher concentrations of PUAs significantly lowered the heart rates of embryos that were exposed to PUAs days after fertilization. Exposure to PUAs diminished the consumption rate of endogenous energy reserves, and the overall size of surf smelt at hatch was reduced. Our results indicate that exposure to dissolved PUAs could impair the fitness of ecologically foundational forage fish early life history stages. Negative effects that manifest into low adult population sizes will have cascading effects on marine ecosystems.
more »
« less
- Award ID(s):
- 2342375
- PAR ID:
- 10638936
- Publisher / Repository:
- Western Washington University Graduate School Collection
- Date Published:
- Format(s):
- Medium: X
- Institution:
- Western Washington University
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Rising ocean temperatures pose significant threats to marine ectotherms. Sensitivity to temperature change varies across life stages, with embryos often being less tolerant to thermal perturbation than adults. Antarctic notothenioid fishes evolved to occupy a narrow, cold thermal regime (−2 to +2°C) as the high-latitude Southern Ocean (SO) cooled to its present icy temperatures, and they are particularly vulnerable to small temperature changes, which makes them ideal sentinel species for assessing climate change impacts. Here, we detail how predicted warming of the SO may affect embryonic development in the Antarctic bullhead notothen,Notothenia coriiceps. Experimental embryos were incubated at +4°C, a temperature projected for the high-latitude SO within the next 100–200 years under high emission climate models, whereas control embryos were incubated at present-day ambient temperature, ∼0°C. Elevated temperature caused a high incidence of embryonic morphological abnormalities, including body axis kinking/curvature and reduced body size. Experimental embryos also developed more rapidly, such that they hatched 68 days earlier than controls (87 vs. 155 days post-fertilization). Accelerated development disrupted the evolved timing of seasonal hatching, shifting larval emergence into the polar winter when food availability is scarce. Transcriptomic analyses revealed molecular signatures of hypoxia and disrupted protein-folding in near-hatching embryos, indicative of severe cellular stress. Predictive modeling suggested that temperature-induced developmental disruptions would narrow seasonal reproductive windows, thereby threatening population viability under future climate scenarios. Together, our findings underscore the vulnerability of Antarctic fish embryos to higher water temperature and highlight the urgent need to understand the consequences of disruption of this important trophic component on ecosystem stability in the SO. Significance StatementAntarctic fishes evolved cold-adapted phenotypes suited to the stable thermal conditions of the Southern Ocean, yet are threatened by rising temperatures. The impact of rising temperatures on early life stages in Antarctic fishes is not well understood; our findings show that projected warming may induce premature hatching, developmental abnormalities, and molecular stress responses in embryos, potentially reducing recruitment and leading to population instability and trophic-level ecosystem disruptions. These results underscore the urgency of assessing climate-driven vulnerabilities across life stages of Antarctic marine organisms to refine population projections and enhance conservation strategies amid ongoing environmental change.more » « less
-
Cao, Yi (Ed.)Polycyclic aromatic hydrocarbons (PAHs) are among the most widespread natural and anthropogenic pollutants, and some PAHs are proven developmental toxicants. We chemically characterized clean and heavily polluted sites and exposed fish embryos to PAH polluted sediment extracts during four critical developmental stages. Embryos were collected from Fundulus heteroclitus populations inhabiting the clean and heavily polluted Superfund estuary. Embryos of parents from the clean sites are sensitive to PAH pollutants while those of parents from the heavily polluted site are resistant. Chemical analysis of embryos suggests PAH accumulation and pollution-induced toxicity among sensitive embryos during development that ultimately kills all sensitive embryos before hatching, while remarkably, the resistant embryos develop normally. The adverse effects on sensitive embryos are manifested as developmental delays, reduced heart rates, and severe heart, liver, and kidney morphological abnormalities. Gene expression analysis of early somitogenesis, heartbeat initiation, late organogenesis, and pre-hatching developmental stages reveals genes whose expression significantly differs between sensitive and resistant embryo populations and helps to explain mechanisms of sensitivity and resistance to polluted environments during vertebrate animal development.more » « less
-
ABSTRACT Respiratory plasticity is a beneficial response to chronic hypoxia in fish. Red drum, a teleost that commonly experiences hypoxia in the Gulf of Mexico, have shown respiratory plasticity following sublethal hypoxia exposure as juveniles, but implications of hypoxia exposure during development are unknown. We exposed red drum embryos to hypoxia (40% air saturation) or normoxia (100% air saturation) for 3 days post fertilization (dpf). This time frame encompasses hatch and exogenous feeding. At 3 dpf, there was no difference in survival or changes in size. After the 3-day hypoxia exposure, all larvae were moved and reared in common normoxic conditions. Fish were reared for ∼3 months and effects of the developmental hypoxia exposure on swim performance and whole-animal aerobic metabolism were measured. We used a cross design wherein fish from normoxia (N=24) were exercised in swim tunnels in both hypoxia (40%, n=12) and normoxia (100%, n=12) conditions, and likewise for hypoxia-exposed fish (n=10 in each group). Oxygen consumption, critical swim speed (Ucrit), critical oxygen threshold (Pcrit) and mitochondrial respiration were measured. Hypoxia-exposed fish had higher aerobic scope, maximum metabolic rate, and higher liver mitochondrial efficiency relative to control fish in normoxia. Interestingly, hypoxia-exposed fish showed increased hypoxia sensitivity (higher Pcrit) and recruited burst swimming at lower swim speeds relative to control fish. These data provide evidence that early hypoxia exposure leads to a complex response in later life.more » « less
-
Changes in the environment promote variations in fish physiological responses. Genetic variation also plays a role in physiological variation. To explore the role of genetics in physiological variation, we assessed variation of cardiac function (heart rate, stroke volume, and cardiac output), oxygen consumption, yolk conversion efficiency, and cost of development in embryonic and larval AB wild-type and NHGRI-1 zebrafish (low heterozygosity line backcrossed from AB wild-type) exposed to different temperature and oxygen regimes. Fish were exposed from fertilization to 7 days post-fertilization (dpf) to control conditions (28 °C, 21% O2) or to low temperature (23 °C, 21% O2), high temperature (33 °C, 21% O2), moderate hypoxia (28 °C, 13% O2), or severe hypoxia (28 °C, 10% O2). We hypothesized that (1) assessed physiological variables will respond similarly in both fish lines and (2) data variability in the low heterozygosity NHGRI-1 zebrafish will be lower than in AB zebrafish. Cardiac function decreased at lower temperature and in hypoxia in both AB and NHGRI-1 zebrafish. Oxygen consumption was increased by higher temperature and hypoxia in AB fish and by severe hypoxia in NHGRI-1 fish. Yolk conversion efficiency was decreased by lower temperature and hypoxia in AB fish and increased by higher temperature and decreased by hypoxia in NHGRI-1 fish. Cost of development was higher mainly in hypoxia-treated fish. Supporting our hypothesis that genetics contributes to physiological variation, NHGRI-1 zebrafish data showed significantly lower coefficients of variation in 84% of assessed endpoints. We conclude that (1) there is a strong genetic component to physiological variation in fishes and (2) low heterozygosity NHGRI-1 zebrafish are useful models for reducing the ‘noise’ from genetic backgrounds in physiological research in fish, which may aid interpretation of experimental results and facilitate reproducibility.more » « less
An official website of the United States government
