Abstract The time-evolution of glacier basal motion remains poorly constrained, despite its importance in understanding the response of glaciers to climate warming. Athabasca Glacier provides an ideal site for observing changes in basal motion over long timescales. Studies from the 1960s provide an in situ baseline dataset constraining ice deformation and basal motion. We use two complementary numerical flow models to investigate changes along a well-studied transverse profile and throughout a larger study area. A cross-sectional flow model allows us to calculate transverse englacial velocity fields to simulate modern and historical conditions. We subsequently use a 3-D numerical ice flow model, Icepack, to estimate changes in basal friction by inverting known surface velocities. Our results reproduce observed velocities well using standard values for flow parameters. They show that basal motion declined significantly (30–40%) and this constitutes the majority (50–80%) of the observed decrease in surface velocities. At the same time, basal resistive stress has remained nearly constant and now balances a much larger fraction of the driving stress. The decline in basal motion over multiple decades of climate warming could serve as a stabilizing feedback mechanism, slowing ice transport to lower elevations, and therefore moderating future mass loss rates. 
                        more » 
                        « less   
                    
                            
                            Borehole tiltmeter and water pressure data for Athabasca Glacier, Alberta, Canada (2022-2023)
                        
                    
    
            Research on Athabasca Glacier in the late 1960s constrained ice column deformation rates using borehole inclinometry techniques (Raymond, 1971). This study sought to conduct a field campaign to estimate modern ice deformation rates using an array of 3-axis tiltmeters deployed in Athabasca Glacier. In July 2022, 12 boreholes were drilled to the bed of Athabasca Glacier and instrument strings of three-axis tiltmeters and pressure transducers were deployed at varying depths. The three-axis accelerometers and magnetometer data from these instruments allow for calculation of sensor azimuth and inclination through September 2023. Basal water pressure from sensors with pressure transducers is also reported for this observational period. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1821017
- PAR ID:
- 10638962
- Publisher / Repository:
- NSF Arctic Data Center
- Date Published:
- Subject(s) / Keyword(s):
- Ice Flow Dynamics Tiltmeters Water Pressure Borehole Deformation Cryosphere
- Format(s):
- Medium: X Other: text/xml
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Accurately modeling the deformation of temperate glacier ice, which is at its pressure-melting temperature and contains liquid water at grain boundaries, is essential for predicting ice sheet discharge to the ocean and associated sea-level rise. Central to such modeling is Glen’s flow law, in which strain rate depends on stress raised to a power ofn= 3 to 4. In sharp contrast to this nonlinearity, we found by conducting large-scale, shear-deformation experiments that temperate ice is linear-viscous (n ≈1.0) over common ranges of liquid water content and stress expected near glacier beds and in ice-stream margins. This linearity is likely caused by diffusive pressure melting and refreezing at grain boundaries and could help to stabilize modeled responses of ice sheets to shrinkage-induced stress increases.more » « less
- 
            Abstract Within the temperate ice of ice stream shear margins, high strain and accompanying recrystallization likely result in longitudinal foliation characterized by thin, steeply dipping ice layers with distinct variations in grain size and bubble content. The sensitivity of ice permeability to these factors, particularly grain size, implies that foliation causes shear‐margin ice to be hydraulically anisotropic. In this study, the permeability of foliated ice is measured in disks cut from cores from Athabasca Glacier, allowing permeability anisotropy to be assessed. We collected cores oriented normal and parallel to foliation from beneath the weathered crust of the glacier. Permeability values range from approximately m2and correlate with the textures and orientations of foliation layers. Results indicate that the anisotropic permeability of foliated ice can be approximated using a model that incorporates an empirical grain‐size/permeability relationship and a model of vein clogging by air bubbles. For water flow parallel to foliation, the arithmetic mean of the area‐weighted permeability closely approximates the bulk permeability; for flow perpendicular to foliation, measurements agree with the harmonic mean permeability, weighted to the thickness of each layer. These findings imply hydraulic anisotropy spanning several orders of magnitude in temperate glacier ice, with water flux governed by the most and least permeable layers in the flow‐parallel and flow‐perpendicular cases, respectively.more » « less
- 
            Abstract We used measurements of radar-detected stratigraphy, surface ice-flow velocities and accumulation rates to investigate relationships between local valley-glacier and regional ice-sheet dynamics in and around the Schmidt Hills, Pensacola Mountains, Antarctica. Ground-penetrating radar profiles were collected perpendicular to the long axis of the Schmidt Hills and the margin of Foundation Ice Stream (FIS). Within the valley confines, the glacier consists of blue ice, and profiles show internal stratigraphy dipping steeply toward the nunataks and truncated at the present-day ablation surface. Below the valley confines, the blue ice is overlain by firn. Data show that upward-progressing overlap of actively accumulating firn onto valley-glacier ice is slightly less than ice flow out of the valleys over the past ∼1200 years. The apparent slightly negative mass balance (-0.25 cm a -1 ) suggests that ice-margin elevations in the Schmidt Hills may have lowered over this time period, even without a change in the surface elevation of FIS. Results suggest that (1) mass-balance gradients between local valley glaciers and regional ice sheets should be considered when using local information to estimate regional ice surface elevation changes; and (2) interpretation of shallow ice structures imaged with radar can provide information about local ice elevation changes and stability.more » « less
- 
            Abstract. Full-thickness crevasses can transport water from the glacier surface to the bedrock where high water pressures can open kilometre-long cracks along the basal interface, which can accelerate glacier flow. We present a first computational modelling study that describes time-dependent fracture propagation in an idealised glacier causing rapid supraglacial lake drainage. A novel two-scale numerical method is developed to capture the elastic and viscoelastic deformations of ice along with crevasse propagation. The fluid-conserving thermo–hydro–mechanical model incorporates turbulent fluid flow and accounts for melting and refreezing in fractures. Applying this model to observational data from a 2008 rapid-lake-drainage event indicates that viscous deformation exerts a much stronger control on hydrofracture propagation compared to thermal effects. This finding contradicts the conventional assumption that elastic deformation is adequate to describe fracture propagation in glaciers over short timescales (minutes to several hours) and instead demonstrates that viscous deformation must be considered to reproduce observations of lake drainage rates and local ice surface elevation changes. As supraglacial lakes continue expanding inland and as Greenland Ice Sheet temperatures become warmer than −8 °C, our results suggest rapid lake drainage events are likely to occur without refreezing, which has implications for the rate of sea level rise.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
