Abstract. A substantial body of empirical evidence exists to suggest that elevated O3 levels are causing significant impacts on wheat yields at sites representative of highly productive arable regions around the world. Here we extend the DO3SE model (designed to estimate total and stomatal O3 deposition for risk assessment) to incorporate a coupled Anet–gsto model to estimate O3 uptake; an O3 damage module (that impacts instantaneous Anet and the timing and rate of senescence); and a crop phenology, carbon allocation, and growth model based on the JULES-crop model. The model structure allows scaling from the leaf to the canopy to allow for multiple leaf populations and canopy layers. The DO3SE-Crop model is calibrated and parameterised using O3 fumigation data from Xiaoji, China, for the year 2008 and for an O3-tolerant and sensitive cultivar. The calibrated model was tested on data for different years (2007 and 2009) and for two additional cultivars and was found to simulate key physiological variables, crop development, and yield with a good level of accuracy. The DO3SE-Crop model simulated the phenological stages of crop development under ambient and elevated O3 treatments for the test datasets with an R2 of 0.95 and an RMSE of 2.5 d. The DO3SE-Crop model was also able to simulate O3-induced yield losses of ∼11 %–19 % compared to observed yield losses of 12 %–34 %, with an R2 of 0.68 (n=20) and an RMSE of 76 g m−2. Additionally, our results indicate that the variance in yield reduction is primarily attributed to the premature decrease in carbon assimilation to the grains caused by accelerated leaf senescence, which is brought forward by 3–5 d under elevated O3 treatments.
more »
« less
This content will become publicly available on November 5, 2025
New ozone–nitrogen model shows early senescence onset is the primary cause of ozone-induced reduction in grain quality of wheat
Abstract. Ozone (O3) air pollution is well known to adversely affect both the grain and protein yield of wheat, an important staple crop. This study aims to identify and model the key plant processes influencing the effect of O3 on wheat protein. The DO3SE-Crop model was modified in this work to incorporate nitrogen (N) processes, and we parameterised the O3 effect on stem, leaf, and grain N using O3 fumigation datasets spanning 3 years and four O3 treatments. These modifications mean that the newly developed DO3SE-CropN model is the first crop model to include O3 effects on N processes, making it a valuable tool for understanding O3 effects on wheat quality. Our results show that the new model captures the O3 effect on grain N concentrations and the anthesis leaf and stem concentrations well, with an R2 of 0.6 for the increase in grain N concentration and an R2 of 0.3 for the decrease in grain N content under O3 exposure. However, the O3 effect on harvest leaf and stem N is exaggerated. Overestimations of harvest leaf N range from ∼20 % to 120 %, while overestimations of harvest stem N range from ∼40 % to 120 %. Further, a sensitivity analysis revealed that, irrespective of O3 treatment, early senescence onset (simulated as being ∼13 d earlier in the treatment with very high O3 vs. the low-O3 treatment) was the primary plant process affecting grain N. This finding has implications for the breeding of stay-green cultivars for maintaining yield, as well as quality, under O3 exposure. This modelling study therefore demonstrates the capability of the DO3SE-CropN model to simulate processes by which O3 affects N content and, thereby, determines that senescence onset is the main driver of O3 reductions in grain protein yield. The implication of the sensitivity analysis is that breeders should focus their efforts on stay-green cultivars that do not experience a protein penalty when developing O3-tolerant lines, to maintain both wheat yield and nutritional quality under O3 exposure. This work supports the second phase of the Tropospheric Ozone Assessment Report (TOAR) by investigating the impacts of tropospheric O3 on wheat, with a focus on wheat quality impacts that will subsequently affect human nutrition.
more »
« less
- Award ID(s):
- 2424399
- PAR ID:
- 10638976
- Publisher / Repository:
- Copernicus
- Date Published:
- Journal Name:
- Biogeosciences
- Volume:
- 21
- Issue:
- 21
- ISSN:
- 1726-4189
- Page Range / eLocation ID:
- 4809 to 4835
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. Elevated surface ozone (O3) concentrations can negatively impact growth and development of crop production by reducing photosynthesis and accelerating leaf senescence. Under unabated climate change, future global O3 concentrations are expected to increase in many regions, adding additional challenges to global agricultural production. Presently, few global process-based crop models consider the effects of O3 stress on crop growth. Here, we incorporated the effects of O3 stress on photosynthesis and leaf senescence into the Decision Support System for Agrotechnology Transfer (DSSAT) crop models for maize, rice, soybean, and wheat. The advanced models reproduced the reported yield declines from observed O3-dose field experiments and O3 exposure responses reported in the literature (O3 relative yield loss RMSE <10 % across all calibrated models). Simulated crop yields decreased as daily O3 concentrations increased above 25 ppb, with average yield losses of 0.16 % to 0.82 % (maize), 0.05 % to 0.63 % (rice), 0.36 % to 0.96 % (soybean), and 0.26 % to 1.23 % (wheat) per ppb O3 increase, depending on the cultivar O3 sensitivity. Increased water deficit stress and elevated CO2 lessen the negative impact of elevated O3 on crop yield, but potential yield gains from CO2 concentration increases may be counteracted by higher O3 concentrations in the future, a potentially important constraint to global change projections for the latest process-based crop models. The improved DSSAT models with O3 representation simulate the effects of O3 stress on crop growth and yield in interaction with other growth factors and can be run in the parallel DSSAT global gridded modeling framework for future studies on O3 impacts under climate change and air pollution scenarios across agroecosystems globally.more » « less
-
null (Ed.)The extent to which rising atmospheric CO2 concentration has already influenced food production and quality is uncertain. Here, we analyzed annual field trials of fall-planted common wheat in California from 1985 to 2019, a period during which global atmospheric CO2 concentration increased 19%. Even after accounting for other major factors (cultivar, location, degree-days, soil temperature, total water applied, nitrogen fertilization, and pathogen infestation), wheat grain yield and protein yield declined 13% over this period, but grain protein content did not change. These results suggest that exposure to gradual CO2 enrichment over the past 35 years has adversely affected wheat grain and protein yield, but not grain protein content.more » « less
-
Wheat and rice produce nutritious grains that provide 32% of the protein in the human diet globally. Here, we examine how genetic modifications to improve assimilation of the inorganic nitrogen forms ammonium and nitrate into protein influence grain yield of these crops. Successful breeding for modified nitrogen metabolism has focused on genes that coordinate nitrogen and carbon metabolism, including those that regulate tillering, heading date, and ammonium assimilation. Gaps in our current understanding include (1) species differences among candidate genes in nitrogen metabolism pathways, (2) the extent to which relative abundance of these nitrogen forms across natural soil environments shape crop responses, and (3) natural variation and genetic architecture of nitrogen-mediated yield improvement. Despite extensive research on the genetics of nitrogen metabolism since the rise of synthetic fertilizers, only a few projects targeting nitrogen pathways have resulted in development of cultivars with higher yields. To continue improving grain yield and quality, breeding strategies need to focus concurrently on both carbon and nitrogen assimilation and consider manipulating genes with smaller effects or that underlie regulatory networks as well as genes directly associated with nitrogen metabolism.more » « less
-
Weed community structure, including composition, taxonomic and functional diversity, may explain variability in crop quality, adding to the variability accounted by management, climatic and genetic factors. Focusing on Mediterranean rainfed wheat crops, we sampled weed communities from 26 fields in Spain that were either organically or conventionally managed. Weed communities were characterized by their abundance and taxonomic, compositional and trait-based measures. Grain protein concentration and the glutenin to gliadin ratio were used as indicators of wheat grain quality. Linear mixed effects models were used to analyze the relationship between crop quality and weed community variables, while accounting for environmental factors. Nitrogen fertilization, previous crop and precipitation explained a large portion of the variation in wheat grain protein concentration (R2marginal = 0.39) and composition (R2marginal = 0.26). Weed community measures had limited effects on grain quality (increasing R2marginal of models by 1% on average). The weed effects were related to the composition and the functional structure of their communities, but not to their abundance. Environmental conditions promoting higher protein concentration were also selecting for weed species with competitive attributes, whereas the role of weed functional diversity depended on the functional trait and on the resource limiting crop grain quality. Understanding the mechanisms of weed effects on crop quality could aid on designing sustainable weed management practices.more » « less
An official website of the United States government
