skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Biomass burning emission estimation in the MODIS era: State-of-the-art and future directions
Accurate estimates of biomass burning (BB) emissions are of great importance worldwide due to the impacts of these emissions on human health, ecosystems, air quality, and climate. Atmospheric modeling efforts to represent these impacts require BB emissions as a key input. This paper is presented by the Biomass Burning Uncertainty: Reactions, Emissions and Dynamics (BBURNED) activity of the International Global Atmospheric Chemistry project and largely based on a workshop held in November 2023. The paper reviews 9 of the BB emissions datasets widely used by the atmospheric chemistry community, all of which rely heavily on Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations of fires scheduled to be discontinued at the end of 2025. In this time of transition away from MODIS to new fire observations, such as those from the Visible Infrared Imaging Radiometer Suite (VIIRS) satellite instruments, we summarize the contemporary status of BB emissions estimation and provide recommendations on future developments. Development of global BB emissions datasets depends on vegetation datasets, emission factors, and assumptions of fire persistence and phase, all of which are highly uncertain with high degrees of variability and complexity and are continually evolving areas of research. As a result, BB emissions datasets can have differences on the order of factor 2–3, and no single dataset stands out as the best for all regions, species, and times. We summarize the methodologies and differences between BB emissions datasets. The workshop identified 5 key recommendations for future research directions for estimating BB emissions and quantifying the associated uncertainties: development and uptake of satellite burned area products from VIIRS and other instruments; mapping of fine scale heterogeneity in fuel type and condition; identification of spurious signal detections and information gaps in satellite fire radiative power products; regional modeling studies and comparison against existing datasets; and representation of the diurnal cycle and plume rise in BB emissions.  more » « less
Award ID(s):
2424399
PAR ID:
10638978
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; « less
Publisher / Repository:
Elementa
Date Published:
Journal Name:
Elem Sci Anth
Volume:
13
Issue:
1
ISSN:
2325-1026
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. We present the Fire Inventory from National Center for Atmospheric Research (NCAR) version 2.5 (FINNv2.5), a fire emissions inventory that provides publicly available emissions of trace gases and aerosols for various applications, including use in global and regional atmospheric chemistry modeling. FINNv2.5 includes numerous updates to the FINN version 1 framework to better represent burned area, vegetation burned, and chemicals emitted. Major changes include the use of active fire detections from the Visible Infrared Imaging Radiometer Suite (VIIRS) at 375 m spatial resolution, which allows smaller fires to be included in the emissions processing. The calculation of burned area has been updated such that a more rigorous approach is used to aggregate fire detections, which better accounts for larger fires and enables using multiple satellite products simultaneously for emissions estimates. Fuel characterization and emissions factors have also been updated in FINNv2.5. Daily fire emissions for many trace gases and aerosols are determined for 2002–2019 (Moderate Resolution Imaging Spectroradiometer (MODIS)-only fire detections) and 2012–2019 (MODIS + VIIRS fire detections). The non-methane organic gas emissions are allocated to the species of several commonly used chemical mechanisms. We compare FINNv2.5 emissions against other widely used fire emissions inventories. The performance of FINNv2.5 emissions as inputs to a chemical transport model is assessed with satellite observations. Uncertainties in the emissions estimates remain, particularly in Africa and South America during August–October and in southeast and equatorial Asia in March and April. Recommendations for future evaluation and use are given. 
    more » « less
  2. Satellite remote sensing of aerosol optical depth (AOD) is essential for detection, characterization, and forecasting of wildfire smoke. In this work, we evaluate the AOD (550 nm) retrievals during the extreme wildfire events over the western U.S. in September 2020. Three products are analyzed, including the Moderate-resolution Imaging Spectroradiometers (MODIS) Multi-Angle Implementation of Atmospheric Correction (MAIAC) product collections C6.0 and C6.1, and the NOAA-20 Visible Infrared Imaging Radiometer (VIIRS) AOD from the NOAA Enterprise Processing System (EPS) algorithm. Compared with the Aerosol Robotic Network (AERONET) data, all three products show strong linear correlations with MAIAC C6.1 and VIIRS presenting overall low bias (<0.06). The accuracy of MAIAC C6.1 is found to be substantially improved with respect to MAIAC C6.0 that drastically underestimated AOD over thick smoke, which validates the effectiveness of updates made in MAIAC C6.1 in terms of an improved representation of smoke aerosol optical properties. VIIRS AOD exhibits comparable uncertainty with MAIAC C6.1 with a slight tendency of increased positive bias over the AERONET AOD range of 0.5–3.0. Averaging coincident retrievals from MAIAC C6.1 and VIIRS provides a lower root mean square error and higher correlation than for the individual products, motivating the benefit of blending these datasets. MAIAC C6.1 and VIIRS are further compared to provide insights on their retrieval strategy. When gridded at 0.1° resolution, MAIAC C6.1 and VIIRS provide similar monthly AOD distribution patterns and the latter exhibits a slightly higher domain average. On daily scale, over thick plumes near fire sources, MAIAC C6.1 reports more valid retrievals where VIIRS tends to have retrievals designated as low or medium quality, which tends to be due to internal quality checks. Over transported smoke near scattered clouds, VIIRS provides better retrieval coverage than MAIAC C6.1 owing to its higher spatial resolution, pixel-level processing, and less strict cloud masking. These results can be used as a guide for applications of satellite AOD retrievals during wildfire events and provide insights on future improvement of retrieval algorithms under heavy smoke conditions. 
    more » « less
  3. Abstract. Accurate representation of fire emissions is critical for modeling the in-plume, near-source, and remote effects of biomass burning (BB) on atmospheric composition, air quality, and climate. In recent years application of advanced instrumentation has significantly improved knowledge of the compounds emitted from fires, which, coupled with a large number of recent laboratory and field campaigns, has facilitated the emergence of new emission factor (EF) compilations. The Next-generation Emissions InVentory expansion of Akagi (NEIVA) version 1.0 is one such compilation in which the EFs for 14 globally relevant fuel and fire types have been updated to include data from recent studies, with a focus on gaseous non-methane organic compounds (NMOC_g). The data are stored in a series of connected tables that facilitate flexible querying from the individual study level to recommended averages of all laboratory and field data by fire type. The querying features are enabled by assignment of unique identifiers to all compounds and constituents, including thousands of NMOC_g. NEIVA also includes chemical and physical property data and model surrogate assignments for three widely used chemical mechanisms for each NMOC_g. NEIVA EF datasets are compared with recent publications and other EF compilations at the individual compound level and in the context of overall volatility distributions and hydroxyl (OH) reactivity (OHR) estimates. The NMOC_g in NEIVA include ∼4–8 times more compounds with improved representation of intermediate volatility organic compounds, resulting in much lower overall volatility (lowest-volatility bin shifted by as much as 3 orders of magnitude) and significantly higher OHR (up to 90 %) than other compilations. These updates can strongly impact model predictions of the effects of BB on atmospheric composition and chemistry. 
    more » « less
  4. Abstract Wildfire is a natural and integral ecosystem process that is necessary to maintain species composition, structure, and ecosystem function. Extreme fires have been increasing over the last decades, which have a substantial impact on air quality, human health, the environment, and climate systems. Smoke aerosols can be transported over large distances, acting as pollutants that affect adjacent and distant downwind communities and environments. Fire emissions are a complicated mixture of trace gases and aerosols, many of which are short‐lived and chemically reactive, and this mixture affects atmospheric composition in complex ways that are not completely understood. We present a review of the current state of knowledge of smoke aerosol emissions originating from wildfires. Satellite observations, from both passive and active instruments, are critical to providing the ability to view the large‐scale influence of fire, smoke, and their impacts. Progress in the development of fire emission estimates to regional and global chemical transport models has advanced, although significant challenges remain, such as connecting ecosystems and fuels burned with dependent atmospheric chemistry. Knowledge of the impact of smoke on radiation, clouds, and precipitation has progressed and is an essential topical research area. However, current measurements and parameterizations are not adequate to describe the impacts on clouds of smoke particles (e.g., CNN, INP) from fire emissions in the range of representative environmental conditions necessary to advance science or modeling. We conclude by providing recommendations to the community that we believe will advance the science and understanding of the impact of fire smoke emissions on human and environmental health, as well as feedback with climate systems. 
    more » « less
  5. BackgroundAccurately estimating burned area from satellites is key to improving biomass burning emission models, studying fire evolution and assessing environmental impacts. Previous studies have found that current methods for estimating burned area of fires from satellite active-fire data do not always provide an accurate estimate. Aims and methodsIn this work, we develop a novel algorithm to estimate hourly accumulated burned area based on the area from boundaries of non-convex polygons containing the accumulated Visible Infrared Imaging Radiometer Suite (VIIRS) active-fire detections. Hourly time series are created by combining VIIRS estimates with Fire Radiative Power (FRP) estimates from GOES-17 (Geostationary Operational Environmental Satellite) data. Conclusions, key results and implicationWe evaluate the performance of the algorithm for both accumulated and change in burned area between airborne observations, and specifically examine sensitivity to the choice of the parameter controlling how much the boundary can shrink towards the interior of the area polygon. Results of the hourly accumulation of burned area for multiple fires from 2019 to 2020 generally correlate strongly with airborne infrared (IR) observations collected by the United States Forest Service National Infrared Operations (NIROPS), exhibiting correlation coefficient values usually greater than 0.95 and errors <20%. 
    more » « less