The effectiveness of digital contact tracing during extended outbreaks of airborne infectious diseases, such as COVID-19, influenza, or RSV, can be hindered by limited social compliance and delays in real-world testing. Prior work has shown the utility of graph learning for bidirectional contact tracing and multi-agent reinforcement learning (MARL) for disease mitigation; however, they rely on post-hoc analysis and full testing compliance, thus limiting real-time applicability. To address these limitations, we propose a new framework for online automated bidirectional contact tracing and disease-aware navigation. Our framework iteratively identifies infectious culprits, infers individual health statuses, and deploys agents to minimize infectious exposure without requiring Oracle health information. Our proposed framework achieves an average online backwards tracing F1-score of 92% and estimates the total case counts within 5% accuracy, even under conditions of probabilistic testing with significant social hesitancy. Additionally, our proposed agent-based navigation system can reduce the disease spread by 29%. These results demonstrate the framework’s potential to address critical gaps in traditional disease surveillance and mitigation models and improve real-time public health interventions.
more »
« less
This content will become publicly available on January 1, 2026
Graph Learning for Bidirectional Disease Contact Tracing on Real Human Mobility Data
For rapidly spreading diseases where many cases show no symptoms, swift and effective contact tracing is essential. While exposure notification applications provide alerts on potential exposures, a fully automated system is needed to track the infectious transmission routes. To this end, our research leverages large-scale contact networks from real human mobility data to identify the path of transmission. More precisely, we introduce a new Infectious Path Centrality network metric that informs a graph learning edge classifier to identify important transmission events, achieving an F1-score of 94%. Additionally, we explore bidirectional contact tracing, which quarantines individuals both retroactively and proactively, and compare its effectiveness against traditional forward tracing, which only isolates individuals after testing positive. Our results indicate that when only 30% of symptomatic individuals are tested, bidirectional tracing can reduce infectious effective reproduction rate by 71%, thus significantly controlling the outbreak.
more »
« less
- Award ID(s):
- 2107085
- PAR ID:
- 10639031
- Publisher / Repository:
- Springer Nature Switzerland
- Date Published:
- Page Range / eLocation ID:
- 205 to 222
- Subject(s) / Keyword(s):
- Graph neural networks Infection dynamics COVID-19
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We explore the effects of cross-diffusion dynamics in epidemiological models. Using reaction–diffusion models of infectious disease, we explicitly consider situations where an individual in a category will move according to the concentration of individuals in other categories. Namely, we model susceptible individuals moving away from infected and infectious individuals. Here, we show that including these cross-diffusion dynamics results in a delay in the onset of an epidemic and an increase in the total number of infectious individuals. This representation provides more realistic spatiotemporal dynamics of the disease classes in an Erlang SEIR model and allows us to study how spatial mobility, due to social behavior, can affect the spread of an epidemic. We found that tailored control measures, such as targeted testing, contact tracing, and isolation of infected individuals, can be more effective in mitigating the spread of infectious diseases while minimizing the negative impact on society and the economy.more » « less
-
Efficient contact tracing and isolation is an effective strategy to control epidemics. It was used effectively during the Ebola epidemic and successfully implemented in several parts of the world during the ongoing COVID-19 pandemic. An important consideration in contact tracing is the budget on the number of individuals asked to quarantine -- the budget is limited for socioeconomic reasons. In this paper, we present a Markov Decision Process (MDP) framework to formulate the problem of using contact tracing to reduce the size of an outbreak while asking a limited number of people to quarantine. We formulate each step of the MDP as a combinatorial problem, MinExposed, which we demonstrate is NP-Hard; as a result, we develop an LP-based approximation algorithm. Though this algorithm directly solves MinExposed, it is often impractical in the real world due to information constraints. To this end, we develop a greedy approach based on insights from the analysis of the previous algorithm, which we show is more interpretable. A key feature of the greedy algorithm is that it does not need complete information of the underlying social contact network. This makes the heuristic implementable in practice and is an important consideration. Finally, we carry out experiments on simulations of the MDP run on real-world networks, and show how the algorithms can help in bending the epidemic curve while limiting the number of isolated individuals. Our experimental results demonstrate that the greedy algorithm and its variants are especially effective, robust, and practical in a variety of realistic scenarios, such as when the contact graph and specific transmission probabilities are not known. All code can be found in our GitHub repository: this https URL.more » « less
-
Contact tracing is a well-established and effective approach for the containment of the spread of infectious diseases. While Bluetooth-based contact tracing method using phones has become popular recently, these approaches suffer from the need for a critical mass adoption to be effective. In this paper, we present WiFiTrace, a network-centric approach for contact tracing that relies on passive WiFi sensing with no client-side involvement. Our approach exploits WiFi network logs gathered by enterprise networks for performance and security monitoring, and utilizes them for reconstructing device trajectories for contact tracing. Our approach is specifically designed to enhance the efficacy of traditional methods, rather than to supplant them with new technology. We designed an efficient graph algorithm to scale our approach to large networks with tens of thousands of users. The graph-based approach outperforms an indexed PostgresSQL in memory by at least 4.5X without any index update overheads or blocking. We have implemented a full prototype of our system and deployed it on two large university campuses. We validated our approach and demonstrate its efficacy using case studies and detailed experiments using real-world WiFi datasets.more » « less
-
During large scale outbreaks of infectious diseases, it is imperative that media report about the potential risks. Because media reporting plays a vital role in disseminating crucial information about diseases and its associated risk, understanding how media reports could influence individuals’ behavior and its potential impact on disease transmission dynamics is important. A mathematical model within an optimal control framework of a generic disease, accounting for treatment and media reporting of disease-induced deaths is formulated. Due to the complexity of choosing the best media function, our goal is to attempt to address the following research question: what is the effect of the media-induced functional response on mitigating the spread of the disease? Connecting the functional forms to the control problem is an approach that is not very developed in the literature. Thus, this study analyses the effect of different incidence functions on disease transmission, and the qualitative nature of epidemic dynamics by carrying out optimal control analysis using three different contact rates and a media function that is dependent on the number of deaths. Theoretical analyses show that the functional forms of the effective contact rate have no effect on initial disease transmission. Time-dependent controls for treatment and vaccination with a constant effective contact rate are incorporated to determine optimal control strategies. Numerical simulations show the short-term impact of media coverage on mitigating the spread of the disease, and it is observed that with three incidence functions used, the qualitative nature of the controls remains the same. The effective contact rates are graphically shown to have a population-level effect on the disease dynamics as the number of treated and recovered individuals could be significantly different. Finally, it is shown that treatment of infectives should be at its maximum rate for a longer period compared to vaccination, while concurrent implementation of vaccination and treatment is more impactful in mitigating the spread of the disease. Thus, it is imperative that media reports and health policy decision making on infectious diseases are contextualized.more » « less
An official website of the United States government
