For rapidly spreading diseases where many cases show no symptoms, swift and effective contact tracing is essential. While exposure notification applications provide alerts on potential exposures, a fully automated system is needed to track the infectious transmission routes. To this end, our research leverages large-scale contact networks from real human mobility data to identify the path of transmission. More precisely, we introduce a new Infectious Path Centrality network metric that informs a graph learning edge classifier to identify important transmission events, achieving an F1-score of 94%. Additionally, we explore bidirectional contact tracing, which quarantines individuals both retroactively and proactively, and compare its effectiveness against traditional forward tracing, which only isolates individuals after testing positive. Our results indicate that when only 30% of symptomatic individuals are tested, bidirectional tracing can reduce infectious effective reproduction rate by 71%, thus significantly controlling the outbreak.
more »
« less
This content will become publicly available on May 5, 2026
Health Status Discovery for Online Bidirectional Contact Tracing and Disease Aware Navigation
The effectiveness of digital contact tracing during extended outbreaks of airborne infectious diseases, such as COVID-19, influenza, or RSV, can be hindered by limited social compliance and delays in real-world testing. Prior work has shown the utility of graph learning for bidirectional contact tracing and multi-agent reinforcement learning (MARL) for disease mitigation; however, they rely on post-hoc analysis and full testing compliance, thus limiting real-time applicability. To address these limitations, we propose a new framework for online automated bidirectional contact tracing and disease-aware navigation. Our framework iteratively identifies infectious culprits, infers individual health statuses, and deploys agents to minimize infectious exposure without requiring Oracle health information. Our proposed framework achieves an average online backwards tracing F1-score of 92% and estimates the total case counts within 5% accuracy, even under conditions of probabilistic testing with significant social hesitancy. Additionally, our proposed agent-based navigation system can reduce the disease spread by 29%. These results demonstrate the framework’s potential to address critical gaps in traditional disease surveillance and mitigation models and improve real-time public health interventions.
more »
« less
- Award ID(s):
- 2107085
- PAR ID:
- 10639032
- Publisher / Repository:
- IEEE
- Date Published:
- Page Range / eLocation ID:
- 457 to 462
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this modern era, infectious diseases, such as H1N1, SARS, and Ebola, are spreading much faster than any time in history. Efficient approaches are therefore desired to monitor and track the diffusion of these deadly epidemics. Traditional computational epidemiology models are able to capture the disease spreading trends through contact network, however, one unable to provide timely updates via real-world data. In contrast, techniques focusing on emerging social media platforms can collect and monitor real-time disease data, but do not provide an understanding of the underlying dynamics of ailment propagation. To achieve efficient and accurate real-time disease prediction, the framework proposed in this paper combines the strength of social media mining and computational epidemiology. Specifically, individual health status is first learned from user's online posts through Bayesian inference, disease parameters are then extracted for the computational models at population-level, and the outputs of computational epidemiology model are inversely fed into social media data based models for further performance improvement. In various experiments, our proposed model outperforms current disease forecasting approaches with better accuracy and more stability.more » « less
-
Exposure notification applications are designed to help trace disease spreading by alerting exposed individuals to get tested. However, false alarms can cause users to become hesitant to respond, making the applications ineffective. To address the shortcomings of slow manual contact tracing, costly lockdowns, and unreliable exposure notification applications, better disease mitigation strategies are needed. In this paper, we propose a new disease mitigation paradigm where people can reduce infection spreading while maintaining some mobility (i.e., Quarantine in Motion). Our approach utilizes Graph Neural Networks (GNNs) to predict disease hotspots such as restaurants, shops and parks, and Multi-Agent Reinforcement Learning (MARL) to collaboratively manage human mobility to reduce disease transmission. As proof of concept, we simulate an infection using real-world mobility data from New York City (over 200,000 devices) and Austin (over 36,000 devices) and train 10,000 agents from each city to manage disease dynamics. Through simulation, we show that a trained population suppresses their reproduction rate below 1, thereby mitigating the outbreak.more » « less
-
Abstract Contact tracing forms a crucial part of the public-health toolbox in mitigating and understanding emergent pathogens and nascent disease outbreaks. Contact tracing in the United States was conducted during the pre-Omicron phase of the ongoing COVID-19 pandemic. This tracing relied on voluntary reporting and responses, often using rapid antigen tests due to lack of accessibility to PCR tests. These limitations, combined with SARS-CoV-2’s propensity for asymptomatic transmission, raise the question “how reliable was contact tracing for COVID-19 in the United States”? We answered this question using a Markov model to examine the efficiency with which transmission could be detected based on the design and response rates of contact tracing studies in the United States. Our results suggest that contact tracing protocols in the U.S. are unlikely to have identified more than 1.65% (95% uncertainty interval: 1.62-1.68%) of transmission events with PCR testing and 1.00% (95% uncertainty interval 0.98-1.02%) with rapid antigen testing. When considering a more robust contact tracing scenario, based on compliance rates in East Asia with PCR testing, this increases to 62.7% (95% uncertainty interval: 62.6-62.8%). We did not assume presence of asymptomatic transmission or superspreading, making our estimates upper bounds on the actual percentages traced. These findings highlight the limitations in interpretability for studies of SARS-CoV-2 disease spread based on U.S. contact tracing and underscore the vulnerability of the population to future disease outbreaks, for SARS-CoV-2 and other pathogens.more » « less
-
Abstract Testing provides essential information for managing infectious disease outbreaks, such as the COVID‐19 pandemic. When testing resources are scarce, an important managerial decision is who to test. This decision is compounded by the fact that potential testing subjects are heterogeneous in multiple dimensions that are important to consider, including their likelihood of being disease‐positive, and how much potential harm would be averted through testing and the subsequent interventions. To increase testing coverage, pooled testing can be utilized, but this comes at a cost of increased false‐negatives when the test is imperfect. Then, the decision problem is to partition the heterogeneous testing population into three mutually exclusive sets: those to be individually tested, those to be pool tested, and those not to be tested. Additionally, the subjects to be pool tested must be further partitioned into testing pools, potentially containing different numbers of subjects. The objectives include the minimization of harm (through detection and mitigation) or maximization of testing coverage. We develop data‐driven optimization models and algorithms to design pooled testing strategies, and show, via a COVID‐19 contact tracing case study, that the proposed testing strategies can substantially outperform the current practice used for COVID‐19 contact tracing (individually testing those contacts with symptoms). Our results demonstrate the substantial benefits of optimizing the testing design, while considering the multiple dimensions of population heterogeneity and the limited testing capacity.more » « less
An official website of the United States government
