skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 3, 2026

Title: Aromatic acid metabolism in Methylobacterium extorquens reveals interplay between methylotrophic and heterotrophic pathways
ABSTRACT Efforts toward microbial conversion of lignin to value-added products face many challenges because lignin’s methoxylated aromatic monomers release toxic C1byproducts such as formaldehyde. The ability to grow on methoxylated aromatic acids (e.g., vanillic acid) has been identified in certain clades of methylotrophs, bacteria characterized by their unique ability to tolerate and metabolize high concentrations of formaldehyde. Here, we use a phyllosphere methylotroph isolate,Methylobacterium extorquensSLI 505, as a model to identify the fate of formaldehyde during methylotrophic growth on vanillic acid.M. extorquensSLI 505 displays concentration-dependent growth phenotypes on vanillic acid without concomitant formaldehyde accumulation. We conclude thatM. extorquensSLI 505 overcomes metabolic bottlenecks from simultaneous assimilation of multicarbon and C1intermediates by allocating formaldehyde toward dissimilation and assimilating the ring carbons of vanillic acid heterotrophically. We correlate this strategy with maximization of bioenergetic yields and demonstrate that formaldehyde dissimilation for energy generation rather than formaldehyde detoxification is advantageous for growth on aromatic acids.M. extorquensSLI 505 also exhibits catabolite repression during growth on methanol and low concentrations of vanillic acid, but no diauxic patterns during growth on methanol and high concentrations of vanillic acid. Results from this study outline metabolic strategies employed byM. extorquensSLI 505 for growth on a complex single substrate that generates both C1and multicarbon intermediates and emphasizes the robustness ofM. extorquensfor biotechnological applications for lignin valorization.IMPORTANCELignin, one of the most abundant and renewable carbon sources on Earth, is a promising alternative to non-renewable fossil fuels used to produce petrochemicals. Degradation of lignin releases toxic C1byproducts such as formaldehyde, and thus most microorganisms are not suitable for biorefining lignin. By contrast,Methylobacterium extorquensSLI 505 is capable of growth on high concentrations of aromatic acids without concomitant formaldehyde accumulation. In addition, we show that the growth ofM. extorquensSLI 505 on aromatic acids is coupled to the production of the bioplastic, polyhydroxybutyrate. Aromatic acids serve as a model by which to understand howM. extorquensSLI 505 balances methylotrophic and heterotrophic pathways during growth to provide strategies for growth optimization when using complex substrates in both ecological and industrial fermentation applications.  more » « less
Award ID(s):
2127732
PAR ID:
10639116
Author(s) / Creator(s):
;
Editor(s):
Bose, Arpita
Publisher / Repository:
American Society for Microbiology
Date Published:
Journal Name:
Applied and Environmental Microbiology
ISSN:
0099-2240
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Pink-pigmented facultative methylotrophs have long been studied for their ability to grow on reduced single-carbon (C 1 ) compounds. The C 1 groups that support methylotrophic growth may come from a variety of sources. Here, we describe a group of Methylobacterium strains that can engage in methoxydotrophy: they can metabolize the methoxy groups from several aromatic compounds that are commonly the product of lignin depolymerization. Furthermore, these organisms can utilize the full aromatic ring as a growth substrate, a phenotype that has rarely been described in Methylobacterium . We demonstrated growth on p -hydroxybenzoate, protocatechuate, vanillate, and ferulate in laboratory culture conditions. We also used comparative genomics to explore the evolutionary history of this trait, finding that the capacity for aromatic catabolism is likely ancestral to two clades of Methylobacterium , but has also been acquired horizontally by closely related organisms. In addition, we surveyed the published metagenome data to find that the most abundant group of aromatic-degrading Methylobacterium in the environment is likely the group related to Methylobacterium nodulans , and they are especially common in soil and root environments. The demethoxylation of lignin-derived aromatic monomers in aerobic environments releases formaldehyde, a metabolite that is a potent cellular toxin but that is also a growth substrate for methylotrophs. We found that, whereas some known lignin-degrading organisms excrete formaldehyde as a byproduct during growth on vanillate, Methylobacterium do not. This observation is especially relevant to our understanding of the ecology and the bioengineering of lignin degradation. 
    more » « less
  2. Abstract Lanthanide (Ln) elements are utilized as cofactors for catalysis by XoxF-type methanol dehydrogenases (MDHs). A primary assumption is that XoxF enzymes produce formate from methanol oxidation, which could impact organisms that require formaldehyde for assimilation. We report genetic and phenotypic evidence showing that XoxF1 (MexAM1_1740) fromMethylobacterium extorquensAM1 produces formaldehyde, and not formate, during growth with methanol. Enzyme purified with lanthanum or neodymium oxidizes formaldehyde. However, formaldehyde oxidation via 2,6-dichlorophenol-indophenol (DCPIP) reduction is not detected in cell-free extracts from wild-type strain methanol- and lanthanum-grown cultures. Formaldehyde activating enzyme (Fae) is required for Ln methylotrophic growth, demonstrating that XoxF1-mediated production of formaldehyde is essential. Addition of exogenous lanthanum increases growth rate with methanol by 9–12% but does not correlate with changes to methanol consumption or formaldehyde accumulation. Transcriptomics analysis of lanthanum methanol growth shows upregulation ofxox1and downregulation ofmxagenes, consistent with the Ln-switch, no differential expression of formaldehyde conversion genes, downregulation of pyrroloquinoline quinone (PQQ) biosynthesis genes, and upregulation offdh4formate dehydrogenase (FDH) genes. Additionally, the Ln-dependent ethanol dehydrogenase ExaF reduces methanol sensitivity in thefaemutant strain when lanthanides are present, providing evidence for the capacity of an auxiliary role for ExaF during Ln-dependent methylotrophy. 
    more » « less
  3. null (Ed.)
    Normal cellular processes give rise to toxic metabolites that cells must mitigate. Formaldehyde is a universal stressor and potent metabolic toxin that is generated in organisms from bacteria to humans. Methylotrophic bacteria such as Methylorubrum extorquens face an acute challenge due to their production of formaldehyde as an obligate central intermediate of single-carbon metabolism. Mechanisms to sense and respond to formaldehyde were speculated to exist in methylotrophs for decades but had never been discovered. Here, we identify a member of the DUF336 domain family, named efgA for enhanced formaldehyde growth, that plays an important role in endogenous formaldehyde stress response in M. extorquens PA1 and is found almost exclusively in methylotrophic taxa. Our experimental analyses reveal that EfgA is a formaldehyde sensor that rapidly arrests growth in response to elevated levels of formaldehyde. Heterologous expression of EfgA in Escherichia coli increases formaldehyde resistance, indicating that its interaction partners are widespread and conserved. EfgA represents the first example of a formaldehyde stress response system that does not involve enzymatic detoxification. Thus, EfgA comprises a unique stress response mechanism in bacteria, whereby a single protein directly senses elevated levels of a toxic intracellular metabolite and safeguards cells from potential damage. 
    more » « less
  4. ABSTRACT ObjectiveNeighborhood perceptions are associated with physical and mental health outcomes; however, the biological associates of this relationship remain to be fully understood. Here, we evaluate the relationship between neighborhood perceptions and amygdala activity and connectivity with salience network (i.e., insula, anterior cingulate, thalamus) nodes. MethodsForty-eight older adults (mean age = 68 [7] years, 52% female, 47% non-Hispanic Black, 2% Hispanic) without dementia or depression completed the Perceptions of Neighborhood Environment Scale. Lower scores indicated less favorable perceptions of aesthetic quality, walking environment, availability of healthy food, safety, violence (i.e., more perceived violence), social cohesion, and participation in activities with neighbors. Participants separately underwent resting-state functional magnetic resonance imaging. ResultsLess favorable perceived safety (β= −0.33,pFDR= .04) and participation in activities with neighbors (β= −0.35,pFDR= .02) were associated with higher left amygdala activity, independent of covariates including psychosocial factors. Less favorable safety perceptions were also associated with enhanced left amygdala functional connectivity with the bilateral insular cortices and the left anterior insula (β= −0.34,pFDR= .04). Less favorable perceived social cohesion was associated with enhanced left amygdala functional connectivity with the right thalamus (β =−0.42,pFDR= .04), and less favorable perceptions about healthy food availability were associated with enhanced left amygdala functional connectivity with the bilateral anterior insula (right:β= −0.39,pFDR= .04; left:β= −0.42,pFDR= .02) and anterior cingulate gyrus (β= −0.37,pFDR= .04). ConclusionsTaken together, our findings document relationships between select neighborhood perceptions and amygdala activity as well as connectivity with salience network nodes; if confirmed, targeted community-level interventions and existing community strengths may promote brain-behavior relationships. 
    more » « less
  5. Becker, Anke (Ed.)
    ABSTRACT Agrobacterium fabrum is a phytopathogen that causes crown gall disease. In the rhizosphere, it encounters plant exudates, some of which are toxic, such as 4-hydroxybenzaldehyde (4HBA). Others, including 4-hydroxybenzoate (4HB), participate in the induction of virulence genes.A. fabrum encodes the transcription factor PecS, which has been reported to enhance bacterial fitness in the rhizosphere. The gene encoding PecS is divergent from pecM, which encodes an efflux pump. PecS represses both pecS and pecM, as evidenced by increased expression in the presence of the PecS ligand urate and by elevated pecM expression in a pecS disruption strain. We report here that the expression ofpecM is induced selectively by 4HBA. Expression of genes encoding enzymes involved in the degradation of 4HB is induced by both 4HBA and 4HB, as expected; however, overexpression ofpecM attenuates the induction by 4HBA, suggesting that 4HBA is a substrate for PecM. Consistent with this inference, untargeted metabolomics shows that 4HBA accumulates intracellularly whenpecM is disrupted. Analysis of PecS by thermal stability assay and DNase I footprinting suggests that 4HBA is not a ligand for PecS. Taken together, our data suggest that 4HBA is a substrate for PecM.IMPORTANCEPlant roots secrete a number of compounds that may be toxic to bacteria residing in the surrounding soil. One such bacterium is Agrobacterium fabrum, which infects plants and induces tumor formation. We show here that an A. fabrum strain in which the efflux pump PecM has been disrupted accumulates 4-hydroxybenzaldehyde, and that this plant root exudate induces the expression of pecM. Our data suggest that PecM and PecS, a transcription factor that regulates pecM expression, both function to promote A. fabrum fitness in the rhizosphere. As a competitive advantage in the rhizosphere is a prerequisite for subsequent plant infection, our data contribute to a more complete understanding of the A. fabrum infection process. 
    more » « less