skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: MLLM-CompBench: A Comparative Reasoning Benchmark for Multimodal LLMs
The ability to compare objects, scenes, or situations is crucial for effective decision-making and problem-solving in everyday life. For instance, comparing the freshness of apples enables better choices during grocery shopping, while comparing sofa designs helps optimize the aesthetics of our living space. Despite its significance, the comparative capability is largely unexplored in artificial general intelligence (AGI). In this paper, we introduce MLLM-COMPBENCH, a benchmark designed to evaluate the comparative reasoning capability of multimodal large language models (MLLMs). MLLM-COMPBENCH mines and pairs images through visually oriented questions covering eight dimensions of relative comparison: visual attribute, existence, state, emotion, temporality, spatiality, quantity, and quality. We curate a collection of around 40K image pairs using metadata from diverse vision datasets and CLIP similarity scores. These image pairs span a broad array of visual domains, including animals, fashion, sports, and both outdoor and indoor scenes. The questions are carefully crafted to discern relative characteristics between two images and are labeled by human annotators for accuracy and relevance. We use MLLM-COMPBENCH to evaluate recent MLLMs, including GPT-4V(ision), Gemini-Pro, and LLaVA-1.6. Our results reveal notable shortcomings in their comparative abilities. We believe MLLM-COMPBENCH not only sheds light on these limitations but also establishes a solid foundation for future enhancements in the comparative capability of MLLMs.  more » « less
Award ID(s):
2107077
PAR ID:
10639186
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Advances in Neural Information Processing Systems 37 (NeurIPS 2024)
Date Published:
Format(s):
Medium: X
Location:
The Thirty-Eighth Annual Conference on Neural Information Processing Systems, Vancouver, Canada
Sponsoring Org:
National Science Foundation
More Like this
  1. With the advent of multi-modal large language models (MLLMs), datasets used for visual question answering (VQA) and referring expression comprehension have seen a resurgence. However, the most popular datasets used to evaluate MLLMs are some of the earliest ones created, and they have many known problems, including extreme bias, spurious correlations, and an inability to permit fine-grained analysis. In this paper, we pioneer evaluating recent MLLMs (LLaVA 1.5, LLaVA-NeXT, BLIP2, InstructBLIP, GPT-4V, and GPT-4o) on datasets designed to address weaknesses in earlier ones. We assess three VQA datasets: 1) TDIUC, which permits fine-grained analysis on 12 question types; 2) TallyQA, which has simple and complex counting questions; and 3) DVQA, which requires optical character recognition for chart understanding. We also study VQDv1, a dataset that requires identifying all image regions that satisfy a given query. Our experiments reveal the weaknesses of many MLLMs that have not previously been reported. Our code is integrated into the widely used LAVIS framework for MLLM evaluation, enabling the rapid assessment of future MLLMs. 
    more » « less
  2. Large Language Models (LLMs) have demonstrated remarkable reasoning capabilities, notably in connecting ideas and adhering to logical rules to solve problems. These models have evolved to accommodate various data modalities, including sound and images, known as multimodal LLMs (MLLMs), which are capable of describing images or sound recordings. Previous work has demonstrated that when the LLM component in MLLMs is frozen, the audio or visual encoder serves to caption the sound or image input facilitating text-based reasoning with the LLM component. We are interested in using the LLM's reasoning capabilities in order to facilitate classification. In this paper, we demonstrate through a captioning/classification experiment that an audio MLLM cannot fully leverage its LLM's text-based reasoning when generating audio captions. We also consider how this may be due to MLLMs separately representing auditory and textual information such that it severs the reasoning pathway from the LLM to the audio encoder. 
    more » « less
  3. Recent advances in Large Language Models (LLMs) have demonstrated significant potential in the field of Recommendation Systems (RSs). Most existing studies have focused on converting user behavior logs into textual prompts and leveraging techniques such as prompt tuning to enable LLMs for recommendation tasks. Meanwhile, research interest has recently grown in multimodal recommendation systems that integrate data from images, text, and other sources using modality fusion techniques. This introduces new challenges to the existing LLM-based recommendation paradigm which relies solely on text modality information. Moreover, although Multimodal Large Language Models (MLLMs) capable of processing multi-modal inputs have emerged, how to equip MLLMs with multi-modal recommendation capabilities remains largely unexplored. To this end, in this paper, we propose the Multimodal Large Language Model-enhanced Sequential Multimodal Recommendation (MLLM-MSR) model. To capture the dynamic user preference, we design a two-stage user preference summarization method. Specifically, we first utilize an MLLM-based item-summarizer to extract image feature given an item and convert the image into text. Then, we employ a recurrent user preference summarization generation paradigm to capture the dynamic changes in user preferences based on an LLM-based user-summarizer. Finally, to enable the MLLM for multi-modal recommendation task, we propose to fine-tune a MLLM-based recommender using Supervised Fine-Tuning (SFT) techniques. Extensive evaluations across various datasets validate the effectiveness of MLLM-MSR, showcasing its superior ability to capture and adapt to the evolving dynamics of user preferences. 
    more » « less
  4. Photographer, curator, and former director of photography at the Museum of Modern Art (MoMA), John Szarkowski remarked in *William Eggleston's Guide*, "While editing directly from life, photographers have found it too difficult to see simultaneously both the blue and the sky." Szarkowski insightfully revealed a notable gap between general and aesthetic visual understanding: while the former emphasizes identifying factual elements in an image (the sky), the latter transcends mere object identification, viewing it instead as an aesthetic component--a pure expanse of blue, valued purely as a color block in visual aesthetics. Such distinctions between general visual understanding (detection, localization, etc.) and aesthetic perception (color, lighting, composition, etc.) pose a significant challenge for existing Multimodal Large Language Models (MLLMs) in comprehending image aesthetics, which is increasingly needed in real-world applications, from image recommendation and enhancement to generation. To fundamentally advance the aesthetic understanding of MLLMs, we introduce a novel dataset, PhotoCritique, derived from extensive discussions among professional photographers and enthusiasts, distinguished by its large scale, expertise, and diversity. Additionally, we propose a new model, PhotoEye, an MLLM featuring a language-guided multi-view vision fusion mechanism for understanding image aesthetics from multiple perspectives. Finally, we introduce PhotoBench, a comprehensive and professional benchmark for aesthetic visual understanding. Our model demonstrates significant advantages over both open-source and commercial models on existing benchmarks and PhotoBench. 
    more » « less
  5. The ability to accurately interpret complex visual information is a crucial topic of multimodal large language models (MLLMs). Recent work indicates that enhanced visual perception significantly reduces hallucinations and improves performance on resolution-sensitive tasks, such as optical character recognition and document analysis. A number of recent MLLMs achieve this goal using a mixture of vision encoders. Despite their success, there is a lack of systematic comparisons and detailed ablation studies addressing critical aspects, such as expert selection and the integration of multiple vision experts. This study provides an extensive exploration of the design space for MLLMs using a mixture of vision encoders and resolutions. Our findings reveal several underlying principles common to various existing strategies, leading to a streamlined yet effective design approach. We discover that simply concatenating visual tokens from a set of complementary vision encoders is as effective as more complex mixing architectures or strategies. We additionally introduce Pre-Alignment to bridge the gap between vision-focused encoders and language tokens, enhancing model coherence. The resulting family of MLLMs, Eagle, surpasses other leading open-source models on major MLLM benchmarks. 
    more » « less