skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Evaluating LLM-Generated Personalized Text Content for Middle School Science Students
Generative artificial intelligence and large language models (LLMs) have proven to be disruptors in education due to their ability to produce human-like text, placing these models under heavy scrutiny. However, LLMs embody a diverse knowledge base and have been shown to be few-shot learners (Brown et al., 2020) that can quickly adapt their output in response to user-provided context. Together, these facets situate LLMs as powerful tools capable of developing personalized learning materials for K-12 students without the need for expansive training data. As this potential has yet to be evaluated in literature, this study aims to investigate the ability of LLMs to adapt science texts to middle school students’ learning preferences.  more » « less
Award ID(s):
2120888
PAR ID:
10639217
Author(s) / Creator(s):
; ;
Publisher / Repository:
Purdue University
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Providing rich, constructive feedback to students is essential for supporting and enhancing their learning. Recent advancements in Generative Artificial Intelligence (AI), particularly with large language models (LLMs), present new opportunities to deliver scalable, repeatable, and instant feedback, effectively making abundant a resource that has historically been scarce and costly. From a technical perspective, this approach is now feasible due to breakthroughs in AI and Natural Language Processing (NLP). While the potential educational benefits are compelling, implementing these technologies also introduces a host of ethical considerations that must be thoughtfully addressed. One of the core advantages of AI systems is their ability to automate routine and mundane tasks, potentially freeing up human educators for more nuanced work. However, the ease of automation risks a “tyranny of the majority”, where the diverse needs of minority or unique learners are overlooked, as they may be harder to systematize and less straightforward to accommodate. Ensuring inclusivity and equity in AI-generated feedback, therefore, becomes a critical aspect of responsible AI implementation in education. The process of developing machine learning models that produce valuable, personalized, and authentic feedback also requires significant input from human domain experts. Decisions around whose expertise is incorporated, how it is captured, and when it is applied have profound implications for the relevance and quality of the resulting feedback. Additionally, the maintenance and continuous refinement of these models are necessary to adapt feedback to evolving contextual, theoretical, and student-related factors. Without ongoing adaptation, feedback risks becoming obsolete or mismatched with the current needs of diverse student populations. Addressing these challenges is essential not only for ethical integrity but also for building the operational trust needed to integrate AI-driven systems as valuable tools in contemporary education. Thoughtful planning and deliberate choices are needed to ensure that these solutions truly benefit all students, allowing AI to support an inclusive and dynamic learning environment. 
    more » « less
  2. Toxic content detection is crucial for online services to remove inappropriate content that violates community standards. To automate the detection process, prior works have proposed varieties of machine learning (ML) approaches to train Language Models (LMs) for toxic content detection. However, both their accuracy and transferability across datasets are limited. Recently, Large Language Models (LLMs) have shown promise in toxic content detection due to their superior zero-shot and few-shot in-context learning ability as well as broad transferability on ML tasks.However, efficiently designing prompts for LLMs remains challenging. Moreover, the high run-time cost of LLMs may hinder their deployments in production. To address these challenges, in this work, we propose BD-LLM, a novel and efficient approach to bootstrapping and distilling LLMs for toxic content detection. Specifically, we design a novel prompting method named Decision-Tree-of-Thought (DToT) to bootstrap LLMs' detection performance and extract high-quality rationales. DToT can automatically select more fine-grained context to re-prompt LLMs when their responses lack confidence. Additionally, we use the rationales extracted via DToT to fine-tune student LMs. Our experimental results on various datasets demonstrate that DToT can improve the accuracy of LLMs by up to 4.6%. Furthermore, student LMs fine-tuned with rationales extracted via DToT outperform baselines on all datasets with up to 16.9% accuracy improvement, while being more than 60x smaller than conventional LLMs. Finally, we observe that student LMs fine-tuned with rationales exhibit better cross-dataset transferability. 
    more » « less
  3. Abstract Large language models (LLMs) have been shown to have significant potential in few-shot learning across various fields, even with minimal training data. However, their ability to generalize to unseen tasks in more complex fields, such as biology and medicine has yet to be fully evaluated. LLMs can offer a promising alternative approach for biological inference, particularly in cases where structured data and sample size are limited, by extracting prior knowledge from text corpora. Here we report our proposed few-shot learning approach, which uses LLMs to predict the synergy of drug pairs in rare tissues that lack structured data and features. Our experiments, which involved seven rare tissues from different cancer types, demonstrate that the LLM-based prediction model achieves significant accuracy with very few or zero samples. Our proposed model, the CancerGPT (with ~ 124M parameters), is comparable to the larger fine-tuned GPT-3 model (with ~ 175B parameters). Our research contributes to tackling drug pair synergy prediction in rare tissues with limited data, and also advancing the use of LLMs for biological and medical inference tasks. 
    more » « less
  4. Olney, AM; Chounta, IA; Liu, Z; Santos, OC; Bittencourt, II (Ed.)
    An advantage of Large Language Models (LLMs) is their contextualization capability – providing different responses based on student inputs like solution strategy or prior discussion, to potentially better engage students than standard feedback. We present a design and evaluation of a proof-of-concept LLM application to offer students dynamic and contextualized feedback. Specifically, we augment an Online Programming Exercise bot for a college-level Cloud Computing course with ChatGPT, which offers students contextualized reflection triggers during a collaborative query optimization task in database design. We demonstrate that LLMs can be used to generate highly situated reflection triggers that incorporate details of the collaborative discussion happening in context. We discuss in depth the exploration of the design space of the triggers and their correspondence with the learning objectives as well as the impact on student learning in a pilot study with 34 students. 
    more » « less
  5. LLMs have demonstrated proficiency in contextualizing their outputs using human input, often matching or beating human-level performance on a variety of tasks. However, LLMs have not yet been used to characterize synergistic learning in students’ collaborative discourse. In this exploratory work, we take a first step towards adopting a human-in-the-loop prompt engineering approach with GPT-4-Turbo to summarize and categorize students’ synergistic learning during collaborative discourse. Our preliminary findings suggest GPT-4-Turbo may be able to characterize students’ synergistic learning in a manner comparable to humans and that our approach warrants further investigation. 
    more » « less