skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Efficient Toxic Content Detection by Bootstrapping and Distilling Large Language Models
Toxic content detection is crucial for online services to remove inappropriate content that violates community standards. To automate the detection process, prior works have proposed varieties of machine learning (ML) approaches to train Language Models (LMs) for toxic content detection. However, both their accuracy and transferability across datasets are limited. Recently, Large Language Models (LLMs) have shown promise in toxic content detection due to their superior zero-shot and few-shot in-context learning ability as well as broad transferability on ML tasks.However, efficiently designing prompts for LLMs remains challenging. Moreover, the high run-time cost of LLMs may hinder their deployments in production. To address these challenges, in this work, we propose BD-LLM, a novel and efficient approach to bootstrapping and distilling LLMs for toxic content detection. Specifically, we design a novel prompting method named Decision-Tree-of-Thought (DToT) to bootstrap LLMs' detection performance and extract high-quality rationales. DToT can automatically select more fine-grained context to re-prompt LLMs when their responses lack confidence. Additionally, we use the rationales extracted via DToT to fine-tune student LMs. Our experimental results on various datasets demonstrate that DToT can improve the accuracy of LLMs by up to 4.6%. Furthermore, student LMs fine-tuned with rationales extracted via DToT outperform baselines on all datasets with up to 16.9% accuracy improvement, while being more than 60x smaller than conventional LLMs. Finally, we observe that student LMs fine-tuned with rationales exhibit better cross-dataset transferability.  more » « less
Award ID(s):
1956435 1901488
PAR ID:
10525560
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
AAAI
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
38
Issue:
19
ISSN:
2159-5399
Page Range / eLocation ID:
21779 to 21787
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a generalizable classification approach that leverages Large Language Models (LLMs) to facilitate the detection of implicitly encoded social meaning in conversations. We design a multi-faceted prompt to extract a textual explanation of the reasoning that connects visible cues to underlying social meanings. These extracted explanations or rationales serve as augmentations to the conversational text to facilitate dialogue understanding and transfer. Our empirical results over 2,340 experimental settings demonstrate the significant positive impact of adding these rationales. Our findings hold true for in-domain classification, zero-shot, and few-shot domain transfer for two different social meaning detection tasks, each spanning two different corpora. 
    more » « less
  2. Large Language Models (LLMs) have demonstrated remarkable capabilities in performing complex tasks. Moreover, recent research has shown that incorporating human-annotated rationales (e.g., Chain-of-Thought prompting) during in-context learning can significantly enhance the performance of these models, particularly on tasks that require reasoning capabilities. However, incorporating such rationales poses challenges in terms of scalability as this requires a high degree of human involvement. In this work, we present a novel framework, Amplifying Model Performance by Leveraging In-Context Learning with Post Hoc Explanations (AMPLIFY), which addresses the aforementioned challenges by automating the process of rationale generation. To this end, we leverage post hoc explanation methods which output attribution scores (explanations) capturing the influence of each of the input features on model predictions. More specifically, we construct automated natural language rationales that embed insights from post hoc explanations to provide corrective signals to LLMs. Extensive experimentation with real-world datasets demonstrates that our framework, AMPLIFY, leads to prediction accuracy improvements of about 10-25% over a wide range of tasks, including those where prior approaches which rely on human-annotated rationales such as Chain-of-Thought prompting fall short. Our work makes one of the first attempts at highlighting the potential of post hoc explanations as valuable tools for enhancing the effectiveness of LLMs. Furthermore, we conduct additional empirical analyses and ablation studies to demonstrate the impact of each of the components of AMPLIFY, which, in turn, lead to critical insights for refining in context learning. 
    more » « less
  3. Social media discourse involves people from different backgrounds, beliefs, and motives. Thus, often such discourse can devolve into toxic interactions. Generative Models, such as Llama and ChatGPT, have recently exploded in popularity due to their capabilities in zero-shot question-answering. Because these models are increasingly being used to ask questions of social significance, a crucial research question is whether they can understand social media dynamics. This work provides a critical analysis regarding generative LLM’s ability to understand language and dynamics in social contexts, particularly considering cyberbullying and anti-cyberbullying (posts aimed at reducing cyberbullying) interactions. Specifically, we compare and contrast the capabilities of different large language models (LLMs) to understand three key aspects of social dynamics: language, directionality, and the occurrence of bullying/anti-bullying messages. We found that while fine-tuned LLMs exhibit promising results in some social media understanding tasks (understanding directionality), they presented mixed results in others (proper paraphrasing and bullying/anti-bullying detection). We also found that fine-tuning and prompt engineering mechanisms can have positive effects in some tasks. We believe that a understanding of LLM’s capabilities is crucial to design future models that can be effectively used in social applications. 
    more » « less
  4. Recent studies have demonstrated significant success in detecting attacks on the Controller Area Network (CAN) bus network using machine learning and deep learning models, including convolutional neural networks and transformer-based architectures. Building on this foundation, our work investigates the use of large language models (LLMs) not only for intrusion detection but also for providing interpretable explanations of their decisions. We fine-tuned three LLMs, i.e., SecureBERT, LLaMA-2, and LLaMA-3, for intrusion detection on CAN bus data. Among them, LLaMA-3 delivered the best results, achieving SOTA performance on the Car-Hacking dataset. Beyond attack classification, we evaluated LLaMA-3’s ability to generate reasoning for its decisions through zero-shot prompting. The model successfully articulated its rationale, particularly for Denial-of- Service (DoS) attacks, demonstrating strong potential for explainability in intrusion detection systems. These findings highlight the potential of LLMs to serve as a highly accurate intrusion detection system while simultaneously providing interpretable explanations, thereby enhancing the investigative capabilities of cybersecurity professionals. 
    more » « less
  5. This thesis investigates the computational modeling of belief and related cognitive states as expressed in text and speech. Understanding how speakers or authors convey commitment, certainty, and emotions is crucial for language understanding, yet poses significant challenges for current NLP systems. We present a comprehensive study spanning multiple facets of belief prediction. We begin by re-examining the widely used FactBank corpus, correcting a critical projection error and establishing new state-of-the-art results for author-only belief prediction through multi-task learning and error analysis. We then tackle the more complex task of source-and-target belief prediction, introducing a novel generative framework using Flan-T5. This includes developing a structured database representation for FactBank and proposing a linearized tree generation approach, culminating in the BeLeaf system for visualization and analysis, which achieves state-of-the-art performance on both FactBank and the MDP corpus. With the rise of large language models (LLMs), we investigate their zero-shot capabilities for the source-and-target belief task. We propose Unified and Hybrid prompting frameworks, finding that while current LLMs struggle, particularly with nested beliefs, our Hybrid approach paired with reasoning-focused LLMs achieves new state-of-the-art results on FactBank. Finally, we explore the role of multimodality among multiple cognitive states. We present the first study on multimodal belief prediction using the CB-Prosody corpus, demonstrating that integrating audio features via fine-tuned Whisper models significantly improves performance over text-only BERT models. We further introduce Synthetic Audio Data (SAD), showing that even synthetic audio generated by TTS systems provides orthogonal, beneficial signals for various cognitive state tasks (belief, emotion, sentiment). We conclude by presenting OmniVox, the first systematic evaluation of omni-LLMs for zero-shot emotion recognition directly from audio, demonstrating their competitiveness with fine-tuned models and analyzing their acoustic reasoning capabilities. 
    more » « less