skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Floating-Point Neural Networks are Provably Robust Universal Approximators
The classical universal approximation (UA) theorem for neural networks establishes mild conditions under which a feedforward neural network can approximate a continuous functionfwith arbitrary accuracy. A recent result shows that neural networks also enjoy a more generalintervaluniversal approximation (IUA) theorem, in the sense that the abstract interpretation semantics of the network using the interval domain can approximate the direct image map off(i.e., the result of applyingfto a set of inputs) with arbitrary accuracy. These theorems, however, rest on the unrealistic assumption that the neural network computes over infinitely precise real numbers, whereas their software implementations in practice compute over finite-precision floating-point numbers. An open question is whether the IUA theorem still holds in the floating-point setting. This paper introduces the first IUA theorem forfloating-pointneural networks that proves their remarkable ability toperfectly capturethe direct image map of any rounded target functionf, showing no limits exist on their expressiveness. Our IUA theorem in the floating-point setting exhibits material differences from the real-valued setting, which reflects the fundamental distinctions between these two computational models. This theorem also implies surprising corollaries, which include (i) the existence ofprovably robustfloating-point neural networks; and (ii) thecomputational completenessof the class of straight-line programs that use only floating-point additions and multiplications for the class of all floating-point programs that halt.  more » « less
Award ID(s):
2311983
PAR ID:
10639269
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer Nature Switzerland
Date Published:
Page Range / eLocation ID:
301 to 326
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To verify safety and robustness of neural networks, researchers have successfully appliedabstract interpretation, primarily using the interval abstract domain. In this paper, we study the theoretical power and limits of the interval domain for neural-network verification. First, we introduce theinterval universal approximation(IUA) theorem. IUA shows that neural networks not only can approximate any continuous functionf(universal approximation) as we have known for decades, but we can find a neural network, using any well-behaved activation function, whose interval bounds are an arbitrarily close approximation of the set semantics off(the result of applyingfto a set of inputs). We call this notion of approximationinterval approximation. Our theorem generalizes the recent result of Baader et al. from ReLUs to a rich class of activation functions that we callsquashable functions. Additionally, the IUA theorem implies that we can always construct provably robust neural networks under ℓ-norm using almost any practical activation function. Second, we study the computational complexity of constructing neural networks that are amenable to precise interval analysis. This is a crucial question, as our constructive proof of IUA is exponential in the size of the approximation domain. We boil this question down to the problem of approximating the range of a neural network with squashable activation functions. We show that the range approximation problem (RA) is a Δ2-intermediate problem, which is strictly harder thanNP-complete problems, assumingcoNP⊄NP. As a result,IUA is an inherently hard problem: No matter what abstract domain or computational tools we consider to achieve interval approximation, there is no efficient construction of such a universal approximator. This implies that it is hard to construct a provably robust network, even if we have a robust network to start with. 
    more » « less
  2. We present a novel abstraction for bounding the Clarke Jacobian of a Lipschitz continuous, but not necessarily differentiable function over a local input region. To do so, we leverage a novel abstract domain built upon dual numbers, adapted to soundly over-approximate all first derivatives needed to compute the Clarke Jacobian. We formally prove that our novel forward-mode dual interval evaluation produces a sound, interval domain-based over-approximation of the true Clarke Jacobian for a given input region. Due to the generality of our formalism, we can compute and analyze interval Clarke Jacobians for a broader class of functions than previous works supported – specifically, arbitrary compositions of neural networks with Lipschitz, but non-differentiable perturbations. We implement our technique in a tool called DeepJ and evaluate it on multiple deep neural networks and non-differentiable input perturbations to showcase both the generality and scalability of our analysis. Concretely, we can obtain interval Clarke Jacobians to analyze Lipschitz robustness and local optimization landscapes of both fully-connected and convolutional neural networks for rotational, contrast variation, and haze perturbations, as well as their compositions. 
    more » « less
  3. Large-scale deep neural networks are both memory and computation-intensive, thereby posing stringent requirements on the computing platforms. Hardware accelerations of deep neural networks have been extensively investigated. Specific forms of binary neural networks (BNNs) and stochastic computing-based neural networks (SCNNs) are particularly appealing to hardware implementations since they can be implemented almost entirely with binary operations. Despite the obvious advantages in hardware implementation, these approximate computing techniques are questioned by researchers in terms of accuracy and universal applicability. Also it is important to understand the relative pros and cons of SCNNs and BNNs in theory and in actual hardware implementations. In order to address these concerns, in this paper, we prove that the ”ideal” SCNNs and BNNs satisfy the universal approximation property with probability 1 (due to the stochastic behavior), which is a new angle from the original approximation property. The proof is conducted by first proving the property for SCNNs from the strong law of large numbers, and then using SCNNs as a “bridge” to prove for BNNs. Besides the universal approximation property, we also derive an appropriate bound for bit length M in order to provide insights for the actual neural network implementations. Based on the universal approximation property, we further prove that SCNNs and BNNs exhibit the same energy complexity. In other words, they have the same asymptotic energy consumption with the growth of network size. We also provide a detailed analysis of the pros and cons of SCNNs and BNNs for hardware implementations and conclude that SCNNs are more suitable. 
    more » « less
  4. Large-scale deep neural networks are both memory and computation-intensive, thereby posing stringent requirements on the computing platforms. Hardware accelerations of deep neural networks have been extensively investigated. Spe- cific forms of binary neural networks (BNNs) and stochastic computing-based neural networks (SCNNs) are particularly appealing to hardware implementations since they can be im- plemented almost entirely with binary operations. Despite the obvious advantages in hardware implementation, these approximate computing techniques are questioned by researchers in terms of accuracy and universal applicability. Also it is important to understand the relative pros and cons of SCNNs and BNNs in theory and in actual hardware im- plementations. In order to address these concerns, in this pa- per we prove that the ”ideal” SCNNs and BNNs satisfy the universal approximation property with probability 1 (due to the stochastic behavior), which is a new angle from the orig- inal approximation property. The proof is conducted by first proving the property for SCNNs from the strong law of large numbers, and then using SCNNs as a “bridge” to prove for BNNs. Besides the universal approximation property, we also derive an appropriate bound for bit length M in order to pro- vide insights for the actual neural network implementations. Based on the universal approximation property, we further prove that SCNNs and BNNs exhibit the same energy com- plexity. In other words, they have the same asymptotic energy consumption with the growth of network size. We also pro- vide a detailed analysis of the pros and cons of SCNNs and BNNs for hardware implementations and conclude that SC- NNs are more suitable. 
    more » « less
  5. The learning speed of feed-forward neural networks is notoriously slow and has presented a bottleneck in deep learning applications for several decades. For instance, gradient-based learning algorithms, which are used extensively to train neural networks, tend to work slowly when all of the network parameters must be iteratively tuned. To counter this, both researchers and practitioners have tried introducing randomness to reduce the learning requirement. Based on the original construction of Igelnik and Pao, single layer neural-networks with random input-to-hidden layer weights and biases have seen success in practice, but the necessary theoretical justification is lacking. In this study, we begin to fill this theoretical gap. We then extend this result to the non-asymptotic setting using a concentration inequality for Monte-Carlo integral approximations. We provide a (corrected) rigorous proof that the Igelnik and Pao construction is a universal approximator for continuous functions on compact domains, with approximation error squared decaying asymptotically likeO(1/n) for the numbernof network nodes. We then extend this result to the non-asymptotic setting, proving that one can achieve any desired approximation error with high probability providednis sufficiently large. We further adapt this randomized neural network architecture to approximate functions on smooth, compact submanifolds of Euclidean space, providing theoretical guarantees in both the asymptotic and non-asymptotic forms. Finally, we illustrate our results on manifolds with numerical experiments. 
    more » « less