skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2311983

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Generating random variates is a fundamental operation in diverse areas of computer science and is supported in almost all modern programming languages. Traditional software libraries for random variate generation are grounded in the idealized Real-RAM model of computation, where algorithms are assumed to be able to access uniformly distributed real numbers from the unit interval and compute with infinite-precision real arithmetic. These assumptions are unrealistic, as any software implementation of a Real-RAM algorithm on a physical computer can instead access a stream of individual random bits and computes with finite-precision arithmetic. As a result, existing libraries have few theoretical guarantees in practice. For example, the actual distribution of a random variate generator is generally unknown, intractable to quantify, and arbitrarily different from the desired distribution; causing runtime errors, unexpected behavior, and inconsistent APIs. This article introduces a new approach to principled and practical random variate generation with formal guarantees. The key idea is to first specify the desired probability distribution in terms of a finite-precision numerical program that defines its cumulative distribution function (CDF), and then generate exact random variates according to this CDF. We present a universal and fully automated method to synthesize exact random variate generators given any numerical CDF implemented in any binary number format, such as floating-point, fixed-point, and posits. The method is guaranteed to operate with the same precision used to specify the CDF, does not overflow, avoids expensive arbitrary-precision arithmetic, and exposes a consistent API. The method rests on a novel space-time optimal implementation for the class of generators that attain the information-theoretically optimal Knuth and Yao entropy rate, consuming the least possible number of input random bits per output variate. We develop a random variate generation library using our method in C and evaluate it on a diverse set of continuous and discrete distributions, showing competitive runtime with the state-of-the-art GNU Scientific Library while delivering higher accuracy, entropy efficiency, and automation. 
    more » « less
    Free, publicly-accessible full text available June 10, 2026
  2. The classical universal approximation (UA) theorem for neural networks establishes mild conditions under which a feedforward neural network can approximate a continuous functionfwith arbitrary accuracy. A recent result shows that neural networks also enjoy a more generalintervaluniversal approximation (IUA) theorem, in the sense that the abstract interpretation semantics of the network using the interval domain can approximate the direct image map off(i.e., the result of applyingfto a set of inputs) with arbitrary accuracy. These theorems, however, rest on the unrealistic assumption that the neural network computes over infinitely precise real numbers, whereas their software implementations in practice compute over finite-precision floating-point numbers. An open question is whether the IUA theorem still holds in the floating-point setting. This paper introduces the first IUA theorem forfloating-pointneural networks that proves their remarkable ability toperfectly capturethe direct image map of any rounded target functionf, showing no limits exist on their expressiveness. Our IUA theorem in the floating-point setting exhibits material differences from the real-valued setting, which reflects the fundamental distinctions between these two computational models. This theorem also implies surprising corollaries, which include (i) the existence ofprovably robustfloating-point neural networks; and (ii) thecomputational completenessof the class of straight-line programs that use only floating-point additions and multiplications for the class of all floating-point programs that halt. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  3. Probabilistic programming languages (PPLs) provide language support for expressing flexible probabilistic models and solving Bayesian inference problems. PPLs withprogrammable inferencemake it possible for users to obtain improved results by customizing inference engines usingguideprograms that are tailored to a correspondingmodelprogram. However, errors in guide programs can compromise the statistical soundness of the inference. This article introduces a novel coroutine-based framework for verifying the correctness of user-written guide programs for a broad class of Markov chain Monte Carlo (MCMC) inference algorithms. Our approach rests on a novel type system for describing communication protocols between a model program and a sequence of guides that each update only a subset of random variables. We prove that, by translating guide types to context-free processes with finite norms, it is possible to check structural type equality between models and guides in polynomial time. This connection gives rise to an efficienttype-inference algorithmfor probabilistic programs with flexible constructs such as general recursion and branching. We also contribute acoverage-checking algorithmthat verifies the support of sequentially composed guide programs agrees with that of the model program, which is a key soundness condition for MCMC inference with multiple guides. Evaluations on diverse benchmarks show that our type-inference and coverage-checking algorithms efficiently infer types and detect sound and unsound guides for programs that existing static analyses cannot handle. 
    more » « less
  4. Hicks, Michael (Ed.)
    This article presents GenSQL, a probabilistic programming system for querying probabilistic generative models of database tables. By augmenting SQL with only a few key primitives for querying probabilistic models, GenSQL enables complex Bayesian inference workflows to be concisely implemented. GenSQL’s query planner rests on a unified programmatic interface for interacting with probabilistic models of tabular data, which makes it possible to use models written in a variety of probabilistic programming languages that are tailored to specific workflows. Probabilistic models may be automatically learned via probabilistic program synthesis, hand-designed, or a combination of both. GenSQL is formalized using a novel type system and denotational semantics, which together enable us to establish proofs that precisely characterize its soundness guarantees. We evaluate our system on two case real-world studies—an anomaly detection in clinical trials and conditional synthetic data generation for a virtual wet lab—and show that GenSQL more accurately captures the complexity of the data as compared to common baselines. We also show that the declarative syntax in GenSQL is more concise and less error-prone as compared to several alternatives. Finally, GenSQL delivers a 1.7-6.8x speedup compared to its closest competitor on a representative benchmark set and runs in comparable time to hand-written code, in part due to its reusable optimizations and code specialization. 
    more » « less
  5. There are two approaches to automatically deriving symbolic worst-case resource bounds for programs: static analysis of the source code and data-driven analysis of cost measurements obtained by running the program. Static resource analysis is usually sound but incomplete. Data-driven analysis can always return a result, but its lack of robustness often leads to unsound results. This paper presents the design, implementation, and empirical evaluation of hybrid resource bound analyses that tightly integrate static analysis and data-driven analysis. The static analysis part builds on automatic amortized resource analysis (AARA), a state-of-the-art type-based resource analysis method that performs cost bound inference using linear optimization. The data-driven part is rooted in novel Bayesian modeling and inference techniques that improve upon previous data-driven analysis methods by reporting an entire probability distribution over likely resource cost bounds. A key innovation is a new type inference system calledHybrid AARAthat coherently integrates Bayesian inference into conventional AARA, combining the strengths of both approaches. Hybrid AARA is proven to be statistically sound under standard assumptions on the runtime cost data. An experimental evaluation on a challenging set of benchmarks shows that Hybrid AARA (i) effectively mitigates the incompleteness of purely static resource analysis; and (ii) is more accurate and robust than purely data-driven resource analysis. 
    more » « less