skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Surfactants can compete with microplastics for surfaces using adhesives as substrates for microplastic sequestration
Experimental efforts supplemented by modeling gauged whether common additives found in soaps and laundry detergents interfered with polyacrylate adhesive-based capture of microplastics. On the experimental front, poly(2-ethylhexyl acrylate) (PEHA) samples were evaluated using gravimetric analysis, probe tack, and functional assessments of adhesive-coated glass slides immersed into DI water solutions containing both microparticles and additives (solvents, softeners, and non-ionic surfactants). Nylon-6 spheres and polyethylene terephthalate microplastics were chosen for adsorption using a count-based method by ImageJ imaging analysis. Molecular dynamics computations simulated 2-ethyl-hexylacrylate (2-EHA) adhesive and microplastic interactions in the presence of water, citrate, glycerol and tergitol detergent additives. The experimental work showed that fewer microplastics were collected when tergitol was added and was in line with lower experimental Work of Adhesion (WoAaq) results for nylon and PETE (94.5% and 54.5% reductions respectively). Computational results also confirmed lower adhesion in the presence of tergitol. The experiments also showed that the adhesive swelled while equilibrating in additive solutions. Models suggested that tergitol most negatively impacted particle binding through a competitive “blocking” of the adhesive substrate while the other additives were less conclusive about potential interferences based on competitive binding.  more » « less
Award ID(s):
2029251
PAR ID:
10639304
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Environmental pollution
Volume:
364
ISSN:
0269-7491
Page Range / eLocation ID:
125372
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Plastic litter is accumulating in ecosystems worldwide. Rivers are a major source of plastic litter to oceans. However, rivers also retain and transform plastic pollution. While methods for calculating particle transport dynamics in rivers are well established, they are infrequently used to quantify the transport and retention of microplastics (i.e., particles < 5 mm) in flowing waters. Measurements of microplastic movement in rivers are needed for a greater understanding of the fate of plastic litter at watershed and global scales, and to inform pollution prevention strategies. Our objectives were to (1) quantify the abundance of microplastics within different river habitats and (2) adapt organic matter “spiraling” metrics to measure microplastic transport concurrent with fine particulate organic matter (FPOM). We quantified microplastic and FPOM abundance across urban river habitats (i.e., surface water, water column, benthos), and calculated downstream particle velocity, index of retention, turnover rate, and spiraling length for both particle types. Microplastic standing stock was assessed using a habitat‐specific approach, and estimates were scaled up to encompass the study reach. Spatial distribution of particles demonstrated that microplastics and FPOM were retained together, likely by hydrodynamic forces that facilitate particle sinking or resuspension. Microplastic particles had a higher downstream particle velocity and lower index of retention relative to FPOM, suggesting that microplastics were retained to a lesser degree than FPOM in the study reaches. Microplastics also showed lower turnover rates and longer spiraling lengths relative to FPOM, attributed to the slow rates of plastic degradation. Thus, rivers are less retentive of microplastics than FPOM, although both particles are retained in similar locations. Because microplastics are resistant to degradation, individual particles can be transported longer distances prior to mineralization than FPOM, making it likely that microplastic particles will encounter larger bodies of water and interact with various aquatic biota in the process. These empirical assessments of particle transport will be valuable for understanding the fate and transformation of microplastic particles in freshwater resources and ultimately contribute to the refinement of global plastic budgets. 
    more » « less
  2. Abstract Ingestion of microplastics (MP) by suspension‐feeding bivalves has been well‐documented. However, it is unclear whether exposure to MP could damage the stomach and digestive gland (gut) of these animals, causing ramifications for organism and ecosystem health. Here, we show no apparent effects of nylon microfiber (MF) ingestion on the gut microbiome or digestive tissues of the blue mussel,Mytilus edulis. We exposed mussels to two low concentrations (50 and 100 particles/L) of either nylon MF orSpartinaspp. particles (dried, ground marsh grass), ca. 250–500 μm in length, or a no particle control laboratory treatment for 21 days. Results showed that nylon MF, when aged in coarsely filtered seawater, developed a different microbial community thanSpartinaspp. particles and seawater, however, even after exposure to this different community, mussel gut microbial communities resisted disturbance from nylon MF. The microbial communities of experimental mussels clustered together in ordination and were similar in taxonomic composition and measures of alpha diversity. Additionally, there was no evidence of damage to gut tissues after ingestion of nylon MF orSpartinaspp. Post‐ingestive particle processing likely mediated a short gut retention time of these relatively large particles, contributing to the negligible treatment effects. 
    more » « less
  3. Tiny glue droplets along the viscous capture threads of spider orb webs prevent insects from escaping. Each droplet is formed of a protein core surrounded by a hygroscopic aqueous layer, which cause the droplet’s adhesion to change with humidity. As an insect struggles to escape the web, a thread’s viscoelastic core proteins extend, transferring adhesive forces to the thread’s support fibers. Maximum adhesive force is achieved when absorbed atmospheric moisture allows a flattened droplet to establish sufficient adhesive contact while maintaining the core protein cohesion necessary for force transfer. We examined the relationship between these droplet properties and adhesive force and the work of extending droplets at five relative humidities in twelve species that occupy habitats which have different humidities. A regression analysis that included both flattened droplet area and core protein elastic modulus described droplet adhesion, but the model was degraded when core protein area was substituted for droplet. Species from low humidity habitats expressed greater adhesion at lower humidities, whereas species from high humidity habitats expressed greater adhesion at high humidities. Our results suggest a general model of droplet adhesion with two adhesion peaks, one for low humidity species, which occurs when increasing droplet area and decreasing protein cohesion intersect, and another for high humidity species, which occurs when area and cohesion have diverged maximally. These dual peaks in adhesive force explain why some species from intermediate and high humidity habitats express high adhesion at several humidities. 
    more » « less
  4. Abstract Nanoparticles have drawn intense interest as delivery agents for diagnosing and treating various cancers. Much of the early success was driven by passive targeting mechanisms such as the enhanced permeability and retention (EPR) effect, but this has failed to lead to the expected clinical successes. Active targeting involves binding interactions between the nanoparticle and cancer cells, which promotes tumor cell-specific accumulation and internalization. Furthermore, nanoparticles are large enough to facilitate multiple bond formation, which can improve adhesive properties substantially in comparison to the single bond case. While multivalent binding is universally believed to be an attribute of nanoparticles, it is a complex process that is still poorly understood and difficult to control. In this review, we will first discuss experimental studies that have elucidated roles for parameters such as nanoparticle size and shape, targeting ligand and target receptor densities, and monovalent binding kinetics on multivalent nanoparticle adhesion efficiency and cellular internalization. Although such experimental studies are very insightful, information is limited and confounded by numerous differences across experimental systems. Thus, we focus the second part of the review on theoretical aspects of binding, including kinetics, biomechanics, and transport physics. Finally, we discuss various computational and simulation studies of nanoparticle adhesion, including advanced treatments that compare directly to experimental results. Future work will ideally continue to combine experimental data and advanced computational studies to extend our knowledge of multivalent adhesion, as well as design the most powerful nanoparticle-based agents to treat cancer. 
    more » « less
  5. To investigate the utility of acrylic monomers from various plant oils in adhesives manufacturing, 25–45 wt. % of high oleic soybean oil-based monomer (HOSBM) was copolymerized in a miniemulsion with commercially applied butyl acrylate (BA), methyl methacrylate (MMA), or styrene (St). The compositions of the resulting ternary latex copolymers were varied in terms of both “soft” (HOSBM, BA) and “rigid” (MMA or St) macromolecular fragments, while total monomer conversion and molecular weight of copolymers were determined after synthesis. For most latexes, results indicated the presence of lower and higher molecular weight fractions, which is beneficial for the material adhesive performance. To correlate surface properties and adhesive performance of HOSBM-based copolymer latexes, contact angle hysteresis (using water as a contact liquid) for each latex-substrate pair was first determined. The data showed that plant oil-based latexes exhibit a clear ability to spread and adhere once applied on the surface of materials differing by polarities, such as semicrystalline polyethylene terephthalate (PET), polypropylene (PP), bleached paperboard (uncoated), and tops coated with a clay mineral paperboard. The effectiveness of plant oil-based ternary latexes as adhesives was demonstrated on PET to PP and coated to uncoated paperboard substrates. As a result, the latexes with high biobased content developed in this study provide promising adhesive performance, causing substrate failure instead of cohesive/adhesive break in many experiments. 
    more » « less