Continuous integration (CI) has become a popular method for automating code changes, testing, and software project delivery. However, sufficient testing prior to code submission is crucial to prevent build breaks. Additionally, testing must provide developers with quick feedback on code changes, which requires fast testing times. While regression test selection (RTS) has been studied to improve the cost-effectiveness of regression testing for lower-level tests (i.e., unit tests), it has not been applied to the testing of user interfaces (UI) in application domains such as mobile apps. UI testing at the UI level requires different techniques such as impact analysis and automated test execution. In this paper, we examine the use of RTS in CI settings for UI testing across various open-source mobile apps. Our analysis focuses on using Frequency Analysis to understand the need for RTS, Cost Analysis to evaluate the cost of impact analysis and test case selection algorithms, and Test Reuse Analysis to determine the reusability of UI test sequences for automation. The insights from this study will guide practitioners and researchers in developing advanced RTS techniques that can be adapted to CI environments for mobile apps. 
                        more » 
                        « less   
                    This content will become publicly available on June 22, 2026
                            
                            Automated Test Transfer across Android Apps using Large Language Models
                        
                    
    
            The pervasiveness of mobile apps in everyday life necessitates robust testing strategies to ensure quality and efficiency, especially through end-to-end usage-based tests for mobile apps' user interfaces (UIs). However, manually creating and maintaining such tests can be costly for developers. Since many apps share similar functionalities beneath diverse UIs, previous works have shown the possibility of transferring UI tests across different apps within the same domain, thereby eliminating the need for writing the tests manually. However, these methods have struggled to accommodate real-world variations, often facing limitations in scenarios where source and target apps are not very similar or fail to accurately transfer test oracles. This paper introduces an innovative technique, LLMigrate, which leverages Large Language Models (LLMs) to efficiently transfer usage-based UI tests across mobile apps. Our experimental evaluation shows LLMigrate can achieve a 97.5% success rate in automated test transfer, reducing the manual effort required to write tests from scratch by 91.1%. This represents an improvement of 9.1% in success rate and 38.2% in effort reduction compared to the best-performing prior technique, setting a new benchmark for automated test transfer. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10639371
- Publisher / Repository:
- The ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA)
- Date Published:
- Journal Name:
- Proceedings of the ACM on Software Engineering
- Volume:
- 2
- Issue:
- ISSTA
- ISSN:
- 2994-970X
- Page Range / eLocation ID:
- 2227 to 2250
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Core features (functionalities) of an app can often be accessed and invoked in several ways, i.e., through alternative sequences of user-interface (UI) interactions. Given the manual effort of writing tests, developers often only consider the typical way of invoking features when creating the tests (i.e., the “sunny day scenario”). However, the alternative ways of invoking a feature are as likely to be faulty. These faults would go undetected without proper tests. To reduce the manual effort of creating UI tests and help developers more thoroughly examine the features of apps, we presentRoute, an automated tool for feature-based UI test augmentation for Android apps.Routefirst takes a UI test and the app under test as input. It then applies novel heuristics to find additional high-quality UI tests, consisting of both inputs and assertions, that verify the same feature as the original test in alternative ways. Application ofRouteon several dozen tests for popular apps on Google Play shows that for 96% of the existing tests,Routewas able to generate at least one alternative test. Moreover, the fault detection effectiveness of augmented test suites in our experiments showed substantial improvements of up to 39% over the original test suites.more » « less
- 
            Writing and maintaining UI tests for mobile apps is a time-consuming and tedious task. While decades of research have produced auto- mated approaches for UI test generation, these approaches typically focus on testing for crashes or maximizing code coverage. By contrast, recent research has shown that developers prefer usage-based tests, which center around specific uses of app features, to help support activities such as regression testing. Very few existing techniques support the generation of such tests, as doing so requires automating the difficult task of understanding the semantics of UI screens and user inputs. In this paper, we introduce Avgust, which automates key steps of generating usage-based tests. Avgust uses neural models for image understanding to process video recordings of app uses to synthesize an app-agnostic state-machine encoding of those uses. Then, Avgust uses this encoding to synthesize test cases for a new target app. We evaluate Avgust on 374 videos of common uses of 18 popular apps and show that 69% of the tests Avgust generates successfully execute the desired usage, and that Avgust’s classifiers outperform the state of the art.more » « less
- 
            A new type of malicious crowdsourcing (a.k.a., crowdturfing) clients, mobile apps with hidden crowdturfing user interface (UI), is increasingly being utilized by miscreants to coordinate crowdturfing workers and publish mobile-based crowdturfing tasks (e.g., app ranking manipulation) even on the strictly controlled Apple App Store. These apps hide their crowdturfing content behind innocent-looking UIs to bypass app vetting and infiltrate the app store. To the best of our knowledge, little has been done so far to understand this new abusive service, in terms of its scope, impact and techniques, not to mention any effort to identify such stealthy crowdturfing apps on a large scale, particularly on the Apple platform. In this paper, we report the first measurement study on iOS apps with hidden crowdturfing UIs. Our findings bring to light the mobile-based crowdturfing ecosystem (e.g., app promotion for worker recruitment, campaign identification) and the underground developer's tricks (e.g., scheme, logic bomb) for evading app vetting.more » « less
- 
            Wearable devices, such as smart watches and fitness trackers are growing in popularity, creating a need for application developers to adapt or extend a UI, typically from a smartphone, onto these devices. Wearables generally have a smaller form factor than a phone; thus, porting an app to the watch necessarily involves reworking the UI. An open problem is identifying best practices for adapting UIs to wearable devices. This paper contributes a study and data set of the state of practice in UI adaptation for wearables. We automatically extract UI designs from a set of 101 popular Android apps that have both a phone and watch version, and manually label how each UI element, as well as how screens in the app, are translated from the phone to the wearable. The paper identifies trends in adaptation strategies and presents design guidelines. We expect that the UI adaptation strategies identified in this paper can have wide-ranging impacts for future research and identifying best practices in this space, such as grounding future user studies that evaluate which strategies improve user satisfaction or automatically adapting UIs.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
