skip to main content


Title: A Survey of Patterns for Adapting Smartphone App UIs to SmartWatches
Wearable devices, such as smart watches and fitness trackers are growing in popularity, creating a need for application developers to adapt or extend a UI, typically from a smartphone, onto these devices. Wearables generally have a smaller form factor than a phone; thus, porting an app to the watch necessarily involves reworking the UI. An open problem is identifying best practices for adapting UIs to wearable devices. This paper contributes a study and data set of the state of practice in UI adaptation for wearables. We automatically extract UI designs from a set of 101 popular Android apps that have both a phone and watch version, and manually label how each UI element, as well as how screens in the app, are translated from the phone to the wearable. The paper identifies trends in adaptation strategies and presents design guidelines. We expect that the UI adaptation strategies identified in this paper can have wide-ranging impacts for future research and identifying best practices in this space, such as grounding future user studies that evaluate which strategies improve user satisfaction or automatically adapting UIs.  more » « less
Award ID(s):
1718491 1717973
NSF-PAR ID:
10191878
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
22nd International Conference on Human-Computer Interaction with MobileDevices and Services (MobileHCI ’20),
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The majority of current smart health applications are deployed on a smartphone paired with a smartwatch. The phone is used as the computation platform or the gateway for connecting to the cloud while the watch is used mainly as the data sensing device. In the case of fall detection applications for older adults, this kind of setup is not very practical since it requires users to always keep their phones in proximity while doing the daily chores. When a person falls, in a moment of panic, it might be difficult to locate the phone in order to interact with the Fall Detection App for the purpose of indicating whether they are fine or need help. This paper demonstrates the feasibility of running a real-time personalized deep-learning-based fall detection system on a smartwatch device using a collaborative edge-cloud framework. In particular, we present the software architecture we used for the collaborative framework, demonstrate how we automate the fall detection pipeline, design an appropriate UI on the small screen of the watch, and implement strategies for the continuous data collection and automation of the personalization process with the limited computational and storage resources of a smartwatch. We also present the usability of such a system with nine real-world older adult participants. 
    more » « less
  2. A new type of malicious crowdsourcing (a.k.a., crowdturfing) clients, mobile apps with hidden crowdturfing user interface (UI), is increasingly being utilized by miscreants to coordinate crowdturfing workers and publish mobile-based crowdturfing tasks (e.g., app ranking manipulation) even on the strictly controlled Apple App Store. These apps hide their crowdturfing content behind innocent-looking UIs to bypass app vetting and infiltrate the app store. To the best of our knowledge, little has been done so far to understand this new abusive service, in terms of its scope, impact and techniques, not to mention any effort to identify such stealthy crowdturfing apps on a large scale, particularly on the Apple platform. In this paper, we report the first measurement study on iOS apps with hidden crowdturfing UIs. Our findings bring to light the mobile-based crowdturfing ecosystem (e.g., app promotion for worker recruitment, campaign identification) and the underground developer's tricks (e.g., scheme, logic bomb) for evading app vetting. 
    more » « less
  3. Battery-free sensing devices harvest energy from their surrounding environment to perform sensing, computation, and communication. This enables previously impossible applications in the Internet-of-Things. A core challenge for these devices is maintaining usefulness despite erratic, random or irregular energy availability; which causes inconsistent execution, loss of service and power failures. Adapting execution (degrading or upgrading) seems promising as a way to stave off power failures, meet deadlines, or increase throughput. However, because of constrained resources and limited local information, it is a challenge to decide when would be the best time to adapt, and how exactly to adapt execution. In this paper, we systematically explore the fundamental mechanisms of energy-aware adaptation, and propose heuristic adaptation as a method for modulating the performance of tasks to enable higher sensor coverage, completion rates, or throughput, depending on the application. We build a task based adaptive runtime system for intermittently powered sensors embodying this concept. We complement this runtime with a user facing simulator that enables programmers to conceptualize the tradeoffs they make when choosing what tasks to adapt, and how, relative to real world energy harvesting environment traces. While we target battery-free, intermittently powered sensors, we see general application to all energy harvesting devices. We explore heuristic adaptation with varied energy harvesting modalities and diverse applications: machine learning, activity recognition, and greenhouse monitoring, and find that the adaptive version of our ML app performs up to 46% more classifications with only a 5% drop in accuracy; the activity recognition app captures 76% more classifications with only nominal down-sampling; and find that heuristic adaptation leads to higher throughput versus non-adaptive in all cases. 
    more » « less
  4. Smartwatches have the potential to provide glanceable, always-available sound feedback to people who are deaf or hard of hearing (DHH). We present SoundWatch, a smartwatch-based deep learning application to sense, classify, and provide feedback about sounds occurring in the environment. To design SoundWatch, we first examined four low-resource sound classification models across four device architectures: watch-only, watch+phone, watch+phone+cloud, and watch+cloud. We found that the best model, VGG-lite, performed similar to the state of the art for nonportable devices although requiring substantially less memory (∼1/3 rd ) and that the watch+phone architecture provided the best balance among CPU, memory, network usage, and latency. Based on these results, we built and conducted a lab evaluation of our smartwatch app with eight DHH participants. We found support for our sound classification app but also uncovered concerns with misclassifications, latency, and privacy. 
    more » « less
  5. Mobile devices typically rely on entry-point and other one-time authentication mechanisms such as a password, PIN, fingerprint, iris, or face. But these authentication types are prone to a wide attack vector and worse 1 INTRODUCTION Currently smartphones are predominantly protected a patterned password is prone to smudge attacks, and fingerprint scanning is prone to spoof attacks. Other forms of attacks include video capture and shoulder surfing. Given the increasingly important roles smartphones play in e-commerce and other operations where security is crucial, there lies a strong need of continuous authentication mechanisms to complement and enhance one-time authentication such that even if the authentication at the point of login gets compromised, the device is still unobtrusively protected by additional security measures in a continuous fashion. The research community has investigated several continuous authentication mechanisms based on unique human behavioral traits, including typing, swiping, and gait. To this end, we focus on investigating physiological traits. While interacting with hand-held devices, individuals strive to achieve stability and precision. This is because a certain degree of stability is required in order to manipulate and interact successfully with smartphones, while precision is needed for tasks such as touching or tapping a small target on the touch screen (Sitov´a et al., 2015). As a result, to achieve stability and precision, individuals tend to develop their own postural preferences, such as holding a phone with one or both hands, supporting hands on the sides of upper torso and interacting, keeping the phone on the table and typing with the preferred finger, setting the phone on knees while sitting crosslegged and typing, supporting both elbows on chair handles and typing. On the other hand, physiological traits, such as hand-size, grip strength, muscles, age, 424 Ray, A., Hou, D., Schuckers, S. and Barbir, A. Continuous Authentication based on Hand Micro-movement during Smartphone Form Filling by Seated Human Subjects. DOI: 10.5220/0010225804240431 In Proceedings of the 7th International Conference on Information Systems Security and Privacy (ICISSP 2021), pages 424-431 ISBN: 978-989-758-491-6 Copyrightc 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved still, once compromised, fail to protect the user’s account and data. In contrast, continuous authentication, based on traits of human behavior, can offer additional security measures in the device to authenticate against unauthorized users, even after the entry-point and one-time authentication has been compromised. To this end, we have collected a new data-set of multiple behavioral biometric modalities (49 users) when a user fills out an account recovery form in sitting using an Android app. These include motion events (acceleration and angular velocity), touch and swipe events, keystrokes, and pattern tracing. In this paper, we focus on authentication based on motion events by evaluating a set of score level fusion techniques to authenticate users based on the acceleration and angular velocity data. The best EERs of 2.4% and 6.9% for intra- and inter-session respectively, are achieved by fusing acceleration and angular velocity using Nandakumar et al.’s likelihood ratio (LR) based score fusion. 
    more » « less