skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A New Personalized Learning Approach Towards Graduate STEM Education: A Pilot in Chemical Engineering
Despite calls over the past two decades to develop and deploy graduate STEM education models that prepare students for a variety of careers outside of academia, few innovations have emerged to meet students at their current skill and preparation levels when entering their graduate studies while also considering students’ individual desired career paths. The U.S.’s current approach to graduate STEM education does not emphasize preparing students with the professional skills and experience outside the lab. Further, students from differing socioeconomic and underserved backgrounds are often not adequately supported. Through a National Science Foundation Innovations in Graduate Education (IGE) award, the University of Pittsburgh Swanson School of Engineering is creating and validating a personalized learning model (PLM) for graduate education within the Department of Chemical and Petroleum Engineering. The goal of this model is to transform and modernize graduate STEM education through a personalized, inclusive, and student-centered approach, which will, in turn, advance existing knowledge on the relationship between personalized learning and student outcomes. The principles of personalized learning guide the PLM. The PLM is comprised of five components. The first three components provide an intentional approach to learning: Instructional Goals developed for each student based on a learner profile and individual development plans (IDP), a purposeful Task Environment that breaks the traditional three-credit coursework into modules and co-curricular professional development streams, and a resolute approach to Scaffolding Instruction that leads to mastery in the student’s area of focus. The last two components provide feedback and reflection: Assessment of Performance Learning quantifies students’ progress, and Reflection and Evaluation, where improvement opportunities help the student to develop further. Incorporating personalization at every touchpoint of a graduate student’s academic journey creates an authentic, customized, student-centered approach to graduate education. This paper describes in detail the model and the literature behind its development, along with assessments used to guide students.  more » « less
Award ID(s):
2325599
PAR ID:
10639490
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
ASEE Conferences
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Despite calls over the past twenty years to develop graduate STEM education models that prepare students for the new post-graduate workforce, few innovations in graduate STEM education have been disseminated. Given the diversity of graduate candidates’ prior skills, preparation, and individual career aspirations, modernizing STEM graduate programs is needed to support and empower student success in graduate programs and beyond. In this session, participants will learn about new research into the development and implementation of a personalized learning model (PLM) for graduate STEM education employed in a chemical engineering department at an R1 university. Our PLM integrates student-centered approaches in coursework, research, and professional development in multiple programmatic components. The key components of our PLM include guided student creation of independent development plans (IDPs), modularization of graduate courses and professional development streams, scaffolding curricular instruction to prioritize independence and mastery, using IDPs for directed research and career discussions and assessment of student performance and learning, and evaluation of the program from current students, alumni, faculty, and industry partners. Our comprehensive PLM plan is designed to maximize impact through personalized learning touchpoints throughout all aspects of graduate training. This presentation will focus on one element of our PLM, the modularization of the chemical engineering core graduate courses. To ensure the learning in core graduate courses reflects the diverse needs of chemical engineers, we generated a body of knowledge (BOK) for graduate chemical engineering in collaboration with our technical advisory board (TAB), which included chemical engineers and people that work with chemical engineers from industry, national labs, academia, and entrepreneurial representatives. We started by collecting the learning objectives (LO’s) from all core chemical engineering courses: Thermodynamics, Kinetics and Reactor Design, Transport Phenomena, Mathematical Methods, and Issues in Research and Teaching. The LO’s were refined by alignment with course assignments and activities and re-written using the most accurate Bloom’s Taxonomy verbs in collaboration with an instructional designer. We utilized GroupWisdomTM for group concept mapping of the new LO’s and provided an opportunity for the TAB to add new LO’s, identified by the individuals in the TAB to be critical for success in each member’s occupation. LO’s for the chemical engineering core courses were sorted on the level of knowledge (undergraduate, graduate, and specialized) and rated for importance by the TAB. Using GroupWisdom’sTM analytic tool for creating a similarity matrix for sorting the level of LO’s, multidimensional scaling, and hierarchical cluster analysis, all core course LO’s have been grouped into 6 clusters. These clusters, along with the current course list and the LO importance ratings, helped us visualize converting chemical engineering core courses into 1-credit hour modules. This restructured curriculum offers opportunities for ensuring that students have learned the requisite prior knowledge by review of essential undergraduate principles, streamlining essential graduate-level material, and supporting self-directed learning through the selection of specialized modules that align with students’ research and career goals. This proposed approach shifts core graduate chemical engineering education to an asset-based system, addressing knowledge gaps and ensuring rigorous, tailored learning experiences. 
    more » « less
  2. U.S. graduate engineering programs traditionally follow a “one-size-fits-all” approach that prioritizes research skills, is slow to adapt to industry trends, and defaults to training students for academic careers. Further, these programs implicitly assume that students start at the same knowledge level, disregarding differences in educational preparation and students’ backgrounds, including socioeconomic and sociocultural factors, prior work experience, and professional development. Through a National Science Foundation Innovations in Graduate Education award, the University of Pittsburgh Swanson School of Engineering is creating and validating a five-component personalized learning model (PLM) for graduate education within the Department of Chemical and Petroleum Engineering. This model, designed around the students' self-identified goals, aims to modernize graduate STEM education through a student-centered approach, advancing existing knowledge on the relationship between personalized learning and student outcomes. The first three components provide an intentional approach to learning: Instructional Goals developed for each student based on a learner profile and individual development plans (IDP), a purposeful Task Environment that breaks the traditional three-credit coursework into modules and co-curricular professional development streams, and a persistent approach to Scaffolding Instruction that leads to students’ mastery. The last two components provide feedback and reflection: Assessment of Performance Learning and Reflection and Evaluation. This paper reports on the methodology, results, and application of work conducted on the second component of the model, the Task Environment. This component purposefully breaks the traditional three-credit coursework into single-credit classes, specifically one-credit fast-paced fundamentals review, one-credit graduate-level core content, and one-credit graduate-level specialized content. This change provides a flexible and personalized learning experience. It enables students to customize their education to fit program requirements and align with their interests, thus allowing students to have agency on the breadth and depth of their intellectual development. To create the modularized curriculum, we initiated a collaborative process that leveraged the collective expertise of our chemical engineering faculty and external subject matter experts (SMEs), including chemical engineers from industry, government, academia, and start-ups. Starting with our faculty's existing learning objectives from each core course, we employed GroupWisdom group concept mapping software to (1) brainstorm on additional graduate-level chemical engineering learning objectives, (2) group the learning objectives into one of three levels: fundamental, graduate core, and specialized topics for each course topic, and (3) rate the importance of each learning objective. The multi-session group concept mapping technique leveraged 25 SMEs. Two sets of learning objectives were produced. The first was a prioritized set of learning outcomes for each content area organized according to the three levels. The second set comprised learning outcomes necessary for graduate students to be successful post-graduation, including technical and non-technical learning objectives. For the first set, faculty have formed a learning community to interpret the results and collectively work on restructuring course content and pedagogy. For the second set, the same SMEs rated the importance of each learning objective, which informed the priority of incorporation into the revised curriculum. 
    more » « less
  3. Community colleges (CCs) play a critical role in advancing the education of all learners. Approximately 40% of first-time college freshman begin in Community Colleges. The proposed framework seeks to support and excite CC students to persist in their STEM education to increase the pipeline for the STEM workforce. Its vision is to provide CC students engineering skills and to excite them about engineering research. The framework enables students to spend 10 summer weeks at Northeastern University to increase skills, confidence, and learn firsthand about research. Each student will join a research lab, working with faculty and graduate student mentors. Also, students will be mentored after summer to further support their successful graduation and/or transfer to a 4-year institution and beyond. The site is guided by two of the grand challenges of the National Academy of Engineering: personalized learning and scientific discovery. Unique aspects of the proposed framework include: a hands-on short course in engineering topics and software tools; formal mentor training including modules for mentoring CC students; daily student meetings with mentors; extensive professional development seminars; formal research training including daily reflection journals, poster presentations and technical writing with a faculty member; and recruitment from a unique pool of highly talented URM students. 
    more » « less
  4. The Rising Engineering Education Faculty Experience program (REEFE) is a professional development program that connects graduate students in engineering education with faculty members at teaching-focused institutions. The program goal is to simultaneously support faculty growth in engineering education and graduate student growth as academic change agents. Our program has transitioned from a partnership between one engineering education graduate program and one engineering institution to a consortium of engineering education graduate programs that sends students to multiple institutions across the country. The REEFE Consortium also developed a unique partnership with the Making Academic Change Happen initiative to offer continuous training to graduate students during their REEFE experience. Many positive outcomes have come from the development of the REEFE Consortium, including better graduate training in research at the coordinating institution, a better understanding of program logistics, and new and strengthened professional relationships. We discovered a number of challenges associated with providing intensive professional development opportunities to graduate students, including timing of experiences relative to degree progress, loss of connection to the home research community, and financial impact, especially as it relates to travel and housing. While a search of existing literature in professional development in higher education has provided best practices for existing programs, there is little to no available research highlighting barriers that exist to offering different types of professional development opportunities to graduate student populations. These barriers are important to highlight as they provide critical information needed in the design and decision making for those seeking to create useful professional development opportunities for graduate populations. This paper provides an updated description of the Rising Engineering Education Faculty Experience program as we attempt to scale the program. We summarize the existing literature on barriers to participation in professional development opportunities for graduate students. Finally, we describe how REEFE both addresses and fails to address these barriers. 
    more » « less
  5. Current structures of STEM graduate programs raise questions about addressing graduates’ interest in multiple career paths, and how programs prepare graduates for positions increasingly available in varied occupations. This problem is addressed through an innovative doctoral program in engineering, Pathways to Entrepreneurship (PAtENT), which works to develop a scalable alternative student-centered framework. This research explores how this program responds to calls for graduate STEM education to address changes in science and engineering, the nature of the workforce, career goals, and how program components build an entrepreneurial mindset. A mixed-methods design includes a curriculum analysis showing alignment of program components to recommendations for Ph.D. STEM programs from the National Academy of Sciences, Engineering, and Medicine. Direct measures include surveys and interviews developed for current doctoral students and faculty to describe students’ and faculty perspectives about program components, particularly entrepreneurship and the patent process. The curriculum analysis shows strong alignment of the PAtENT program components and activities to the ten elements of the National Academies’ recommendations. A survey of graduate students in engineering, computing, and business show strong measures in engineering and entrepreneurial self-efficacy. Interviews of program participants and faculty demonstrate strong interest in patents and developing entrepreneurship. This innovative program in engineering focusing on obtaining a patent as a capstone shows potential to reform doctoral studies, so candidates are prepared not only for academic careers but a range of industry and government work environments. This work will lead to development of a model for other graduate STEM programs. 
    more » « less