skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1801036

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The Von Damm vent field (VDVF) on the Mid-Cayman Rise in the Caribbean Sea is unique among modern hydrothermal systems in that the chimneys and mounds are almost entirely composed of talc. We analyzed samples collected in 2020 and report that in addition to disordered talc of variable crystallinity, carbonates are a major class of mineral at VDVF. The carbonate minerals include aragonite, calcite, magnesium-rich calcite, and dolomite. Talc and carbonate mineral textures indicate that, rather than replacing volcanic host rock, they precipitate from the mixing of hydrothermal fluids and seawater at the seafloor, occurring in chimneys and surrounding rubble. Alternating precipitation of this mineral assemblage is pervasive, with carbonate minerals typically being succeeded by talc, and with indications that in some cases talc and carbonate minerals replace one another. Stable carbon isotopic data indicate the carbonate minerals originate from the mixing of seawater and hydrothermal fluid, which is supported by U-Th data. Radiocarbon calcite ages and talc 234U-230Th isochron ages indicate mineral ages spanning over thousands to tens of thousands of years. Analyses of these samples illustrate a dynamic system that transitions from carbonate-dominated to Mg-silicate–dominated precipitation over time scales of thousands of years. Our observations raise questions regarding the eventual fate of seafloor precipitates and whether carbonate and silicate minerals in such settings are sequestered and represented in the rock record. 
    more » « less
    Free, publicly-accessible full text available May 20, 2026
  2. Abstract Single‐celled microbial eukaryotes inhabit deep‐sea hydrothermal vent environments and play critical ecological roles in the vent‐associated microbial food web. 18S rRNA amplicon sequencing of diffuse venting fluids from four geographically‐ and geochemically‐distinct hydrothermal vent fields was applied to investigate community diversity patterns among protistan assemblages. The four vent fields include Axial Seamount at the Juan de Fuca Ridge, Sea Cliff and Apollo at the Gorda Ridge, all in the NE Pacific Ocean, and Piccard and Von Damm at the Mid‐Cayman Rise in the Caribbean Sea. We describe species diversity patterns with respect to hydrothermal vent field and sample type, identify putative vent endemic microbial eukaryotes, and test how vent fluid geochemistry may influence microbial community diversity. At a semi‐global scale, microbial eukaryotic communities at deep‐sea vents were composed of similar proportions of dinoflagellates, ciliates, Rhizaria, and stramenopiles. Individual vent fields supported distinct and highly diverse assemblages of protists that included potentially endemic or novel vent‐associated strains. These findings represent a census of deep‐sea hydrothermal vent protistan communities. Protistan diversity, which is shaped by the hydrothermal vent environment at a local scale, ultimately influences the vent‐associated microbial food web and the broader deep‐sea carbon cycle. 
    more » « less
  3. Hansell, DA; Carlson, CA (Ed.)
    The transport and transformation of carbon in subseafloor environments is a significant component of past, present, and future global fluxes. Seawater’s dissolved organic matter (DOM) enters the subseafloor and undergoes complex reactions including microbial processing, interactions with the rock matrix, and thermal restructuring and remineralization to carbon dioxide. Large shifts in concentrations, isotopic compositions, and molecular abundances provide a rich source of information about the environments through which fluids have circulated. Broad patterns linking geological settings to the fate of organic molecules can now be drawn, including the wide-scale removal of seawater DOM in ridge-flank systems, and large additions of abiotically synthesized compounds into fluids that interact with mantle rocks. Outstanding questions remain concerning the role of hydrothermal circulation as a source of refractory organic matter and its impact on the isotopic signature of deep oceanic DOM. 
    more » « less
  4. In January – February 2020, RV Atlantis cruise AT42-22 collected water, volatile, and fluid samples with ROV Jason from hydrothermal vent fields on the mid-Cayman rise. The expedition carried out 4 dives at the Von Damm field and 5 at the Piccard field. The first file is the sampling logs and fluid geochemistry from the Hydrothermal Organic Geochemistry (HOG) sampler. It includes sampling locations, depths, heading, volumes, the highest temperature recorded during sampling, the average fluid temperature recorded during sampling, and pH.  The second file is the measured geochemistry of the fluids, including concentrations of hydrogen sulfide, dissolved inorganic carbon, formate, phosphate, nitrate, nitrite, ammonia, and the stable isotope composition (d13C) of dissolved inorganic carbon. 
    more » « less