We prove two finiteness results for reductions of Hecke orbits of abelian varieties over local fields: one in the case of supersingular reduction and one in the case of reductive monodromy. As an application, we show that only finitely many abelian varieties on a fixed isogeny leaf admit CM lifts, which in particular implies that in each fixed dimensiongonly finitely many supersingular abelian varieties admit CM lifts. Combining this with the Kuga–Satake construction, we also show that only finitely many supersingular K3surfaces admit CM lifts. Our tools includep-adic Hodge theory and group-theoretic techniques.
more »
« less
This content will become publicly available on August 13, 2026
Kontsevich–Zorich monodromy groups of translation covers of some platonic solids
We compute the Zariski closure of the Kontsevich–Zorich monodromy groups arising from certain square-tiled surfaces that are geometrically motivated. Specifically we consider three surfaces that emerge as translation covers of platonic solids and quotients of infinite polyhedra and show that the Zariski closure of the monodromy group arising from each surface is equal to a power of\text{SL}(2,{\mathbb{R}}). We prove our results by finding generators for the monodromy groups, using a theorem of Matheus–Yoccoz–Zmiaikou (2014) that provides constraints on the Zariski closure of the groups (to obtain an “upper bound”), and analyzing the dimension of the Lie algebra of the Zariski closure of the group (to obtain a “lower bound”). Moreover, combining our analysis with the Eskin–Kontsevich–Zorich formula (2014), we also compute the Lyapunov spectrum of the Kontsevich–Zorich cocycle for said square-tiled surfaces.
more »
« less
- Award ID(s):
- 2103136
- PAR ID:
- 10639731
- Publisher / Repository:
- EMS Press
- Date Published:
- Journal Name:
- Groups, Geometry, and Dynamics
- Volume:
- 19
- Issue:
- 3
- ISSN:
- 1661-7207
- Page Range / eLocation ID:
- 1129 to 1163
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We prove a conjecture of the first named author (2014) on the upper bound Fourier coefficients of automorphic forms in Arthur packets of all classical groups over any number field. This conjecture generalizes the global version of the local temperedL-packet conjecture of Shahidi (1990). Under certain assumption, we also compute the wavefront sets of the unramified unitary dual for split classical groups.more » « less
-
Abstract For every$$n\ge 2$$ , thesurface Houghton group$${\mathcal {B}}_n$$ is defined as the asymptotically rigid mapping class group of a surface with exactlynends, all of them non-planar. The groups$${\mathcal {B}}_n$$ are analogous to, and in fact contain, the braided Houghton groups. These groups also arise naturally in topology: every monodromy homeomorphism of a fibered component of a depth-1 foliation of closed 3-manifold is conjugate into some$${\mathcal {B}}_n$$ . As countable mapping class groups of infinite type surfaces, the groups$$\mathcal {B}_n$$ lie somewhere between classical mapping class groups and big mapping class groups. We initiate the study of surface Houghton groups proving, among other things, that$$\mathcal {B}_n$$ is of type$$\text {F}_{n-1}$$ , but not of type$$\text {FP}_{n}$$ , analogous to the braided Houghton groups.more » « less
-
Abstract We study certain one-parameter families of exponential sums of Airy–Laurent type. Their general theory was developed in Katz and Tiep (Airy sheaves of Laurent type: an introduction,https://web.math.princeton.edu/~nmk/kt31_11sept.pdf). In the present paper, we make use of that general theory to compute monodromy groups in some particularly simple families (in the sense of “simple to remember), realizing Weyl groups of type$$E_6$$ and$$E_8$$ .more » « less
-
We present new computational results for symplectic monodromy groups of hypergeometric dif- ferential equations. In particular, we compute the arithmetic closure of each group, sometimes jus- tifying arithmeticity. The results are obtained by extending our earlier algorithms for Zariski dense groups, based on the strong approximation and congruence subgroup properties.more » « less
An official website of the United States government
