Abstract Given$$g \in \mathbb N \cup \{0, \infty \}$$ , let$$\Sigma _g$$ denote the closed surface of genusgwith a Cantor set removed, if$$g<\infty $$ ; or the blooming Cantor tree, when$$g= \infty $$ . We construct a family$$\mathfrak B(H)$$ of subgroups of$${{\,\textrm{Map}\,}}(\Sigma _g)$$ whose elements preserve ablock decompositionof$$\Sigma _g$$ , andeventually like actlike an element ofH, whereHis a prescribed subgroup of the mapping class group of the block. The group$$\mathfrak B(H)$$ surjects onto an appropriate symmetric Thompson group of Farley–Hughes; in particular, it answers positively. Our main result asserts that$$\mathfrak B(H)$$ is of type$$F_n$$ if and only ifHis. As a consequence, for every$$g\in \mathbb N \cup \{0, \infty \}$$ and every$$n\ge 1$$ , we construct a subgroup$$G <{{\,\textrm{Map}\,}}(\Sigma _g)$$ that is of type$$F_n$$ but not of type$$F_{n+1}$$ , and which contains the mapping class group of every compact surface of genus$$\le g$$ and with non-empty boundary.
more »
« less
Surface Houghton groups
Abstract For every$$n\ge 2$$ , thesurface Houghton group$${\mathcal {B}}_n$$ is defined as the asymptotically rigid mapping class group of a surface with exactlynends, all of them non-planar. The groups$${\mathcal {B}}_n$$ are analogous to, and in fact contain, the braided Houghton groups. These groups also arise naturally in topology: every monodromy homeomorphism of a fibered component of a depth-1 foliation of closed 3-manifold is conjugate into some$${\mathcal {B}}_n$$ . As countable mapping class groups of infinite type surfaces, the groups$$\mathcal {B}_n$$ lie somewhere between classical mapping class groups and big mapping class groups. We initiate the study of surface Houghton groups proving, among other things, that$$\mathcal {B}_n$$ is of type$$\text {F}_{n-1}$$ , but not of type$$\text {FP}_{n}$$ , analogous to the braided Houghton groups.
more »
« less
- Award ID(s):
- 2305286
- PAR ID:
- 10501820
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Mathematische Annalen
- ISSN:
- 0025-5831
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A search for exotic decays of the Higgs boson ($$\text {H}$$ ) with a mass of 125$$\,\text {Ge}\hspace{-.08em}\text {V}$$ to a pair of light pseudoscalars$$\text {a}_{1} $$ is performed in final states where one pseudoscalar decays to two$${\textrm{b}}$$ quarks and the other to a pair of muons or$$\tau $$ leptons. A data sample of proton–proton collisions at$$\sqrt{s}=13\,\text {Te}\hspace{-.08em}\text {V} $$ corresponding to an integrated luminosity of 138$$\,\text {fb}^{-1}$$ recorded with the CMS detector is analyzed. No statistically significant excess is observed over the standard model backgrounds. Upper limits are set at 95% confidence level ($$\text {CL}$$ ) on the Higgs boson branching fraction to$$\upmu \upmu \text{ b } \text{ b } $$ and to$$\uptau \uptau \text{ b } \text{ b },$$ via a pair of$$\text {a}_{1} $$ s. The limits depend on the pseudoscalar mass$$m_{\text {a}_{1}}$$ and are observed to be in the range (0.17–3.3) $$\times 10^{-4}$$ and (1.7–7.7) $$\times 10^{-2}$$ in the$$\upmu \upmu \text{ b } \text{ b } $$ and$$\uptau \uptau \text{ b } \text{ b } $$ final states, respectively. In the framework of models with two Higgs doublets and a complex scalar singlet (2HDM+S), the results of the two final states are combined to determine upper limits on the branching fraction$${\mathcal {B}}(\text {H} \rightarrow \text {a}_{1} \text {a}_{1} \rightarrow \ell \ell \text{ b } \text{ b})$$ at 95%$$\text {CL}$$ , with$$\ell $$ being a muon or a$$\uptau $$ lepton. For different types of 2HDM+S, upper bounds on the branching fraction$${\mathcal {B}}(\text {H} \rightarrow \text {a}_{1} \text {a}_{1} )$$ are extracted from the combination of the two channels. In most of the Type II 2HDM+S parameter space,$${\mathcal {B}}(\text {H} \rightarrow \text {a}_{1} \text {a}_{1} )$$ values above 0.23 are excluded at 95%$$\text {CL}$$ for$$m_{\text {a}_{1}}$$ values between 15 and 60$$\,\text {Ge}\hspace{-.08em}\text {V}$$ .more » « less
-
Abstract Let$$\phi $$ be a positive map from the$$n\times n$$ matrices$$\mathcal {M}_n$$ to the$$m\times m$$ matrices$$\mathcal {M}_m$$ . It is known that$$\phi $$ is 2-positive if and only if for all$$K\in \mathcal {M}_n$$ and all strictly positive$$X\in \mathcal {M}_n$$ ,$$\phi (K^*X^{-1}K) \geqslant \phi (K)^*\phi (X)^{-1}\phi (K)$$ . This inequality is not generally true if$$\phi $$ is merely a Schwarz map. We show that the corresponding tracial inequality$${{\,\textrm{Tr}\,}}[\phi (K^*X^{-1}K)] \geqslant {{\,\textrm{Tr}\,}}[\phi (K)^*\phi (X)^{-1}\phi (K)]$$ holds for a wider class of positive maps that is specified here. We also comment on the connections of this inequality with various monotonicity statements that have found wide use in mathematical physics, and apply it, and a close relative, to obtain some new, definitive results.more » « less
-
Abstract Let$$(h_I)$$ denote the standard Haar system on [0, 1], indexed by$$I\in \mathcal {D}$$ , the set of dyadic intervals and$$h_I\otimes h_J$$ denote the tensor product$$(s,t)\mapsto h_I(s) h_J(t)$$ ,$$I,J\in \mathcal {D}$$ . We consider a class of two-parameter function spaces which are completions of the linear span$$\mathcal {V}(\delta ^2)$$ of$$h_I\otimes h_J$$ ,$$I,J\in \mathcal {D}$$ . This class contains all the spaces of the formX(Y), whereXandYare either the Lebesgue spaces$$L^p[0,1]$$ or the Hardy spaces$$H^p[0,1]$$ ,$$1\le p < \infty $$ . We say that$$D:X(Y)\rightarrow X(Y)$$ is a Haar multiplier if$$D(h_I\otimes h_J) = d_{I,J} h_I\otimes h_J$$ , where$$d_{I,J}\in \mathbb {R}$$ , and ask which more elementary operators factor throughD. A decisive role is played by theCapon projection$$\mathcal {C}:\mathcal {V}(\delta ^2)\rightarrow \mathcal {V}(\delta ^2)$$ given by$$\mathcal {C} h_I\otimes h_J = h_I\otimes h_J$$ if$$|I|\le |J|$$ , and$$\mathcal {C} h_I\otimes h_J = 0$$ if$$|I| > |J|$$ , as our main result highlights: Given any bounded Haar multiplier$$D:X(Y)\rightarrow X(Y)$$ , there exist$$\lambda ,\mu \in \mathbb {R}$$ such that$$\begin{aligned} \lambda \mathcal {C} + \mu ({{\,\textrm{Id}\,}}-\mathcal {C})\text { approximately 1-projectionally factors through }D, \end{aligned}$$ i.e., for all$$\eta > 0$$ , there exist bounded operatorsA, Bso thatABis the identity operator$${{\,\textrm{Id}\,}}$$ ,$$\Vert A\Vert \cdot \Vert B\Vert = 1$$ and$$\Vert \lambda \mathcal {C} + \mu ({{\,\textrm{Id}\,}}-\mathcal {C}) - ADB\Vert < \eta $$ . Additionally, if$$\mathcal {C}$$ is unbounded onX(Y), then$$\lambda = \mu $$ and then$${{\,\textrm{Id}\,}}$$ either factors throughDor$${{\,\textrm{Id}\,}}-D$$ .more » « less
-
Abstract Fix a positive integernand a finite field$${\mathbb {F}}_q$$ . We study the joint distribution of the rank$${{\,\mathrm{rk}\,}}(E)$$ , then-Selmer group$$\text {Sel}_n(E)$$ , and then-torsion in the Tate–Shafarevich group Equation missing<#comment/>asEvaries over elliptic curves of fixed height$$d \ge 2$$ over$${\mathbb {F}}_q(t)$$ . We compute this joint distribution in the largeqlimit. We also show that the “largeq, then large height” limit of this distribution agrees with the one predicted by Bhargava–Kane–Lenstra–Poonen–Rains.more » « less
An official website of the United States government

