skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effective equidistribution of large dimensional measures on affine invariant submanifolds
The unstable foliation, that locally is given by changing horizontal components of period coordinates, plays an important role in study of translation surfaces, including their deformation theory and in the understanding of horocycle invariant measures. In this article we show that measures of large dimension on the unstable foliation equidistribute in affine invariant submanifolds and give an effective rate. An analogous result in the setting of homogeneous dynamics is crucially used in the effective density and equidistribution results of Lindenstrauss-Mohammadi and Lindenstrauss--Mohammadi--Wang.  more » « less
Award ID(s):
2103136
PAR ID:
10639736
Author(s) / Creator(s):
Publisher / Repository:
arXiv
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We introduce a contact invariant in the bordered sutured Heegaard Floer homology of a three-manifold with boundary. The input for the invariant is a contact manifold $$(M, \xi , \mathcal {F})$$ whose convex boundary is equipped with a signed singular foliation $$\mathcal {F}$$ closely related to the characteristic foliation. Such a manifold admits a family of foliated open book decompositions classified by a Giroux correspondence, as described in [LV20]. We use a special class of foliated open books to construct admissible bordered sutured Heegaard diagrams and identify well-defined classes $$c_D$$ and $$c_A$$ in the corresponding bordered sutured modules. Foliated open books exhibit user-friendly gluing behavior, and we show that the pairing on invariants induced by gluing compatible foliated open books recovers the Heegaard Floer contact invariant for closed contact manifolds. We also consider a natural map associated to forgetting the foliation $$\mathcal {F}$$ in favor of the dividing set and show that it maps the bordered sutured invariant to the contact invariant of a sutured manifold defined by Honda–Kazez–Matić. 
    more » « less
  2. Abstract We explore new connections between the dynamics of conservative partially hyperbolic systems and the geometric measure-theoretic properties of their invariant foliations. Our methods are applied to two main classes of volume-preserving diffeomorphisms: fibered partially hyperbolic diffeomorphisms and center-fixing partially hyperbolic systems. When the center is one-dimensional, assuming the diffeomorphism is accessible, we prove that the disintegration of the volume measure along the center foliation is either atomic or Lebesgue. Moreover, the latter case is rigid in dimension three (this does not require accessibility): the center foliation is actually smooth and the diffeomorphism is smoothly conjugate to an explicit rigid model. A partial extension to fibered partially hyperbolic systems with compact fibers of any dimension is also obtained. A common feature of these classes of diffeomorphisms is that the center leaves either are compact or can be made compact by taking an appropriate dynamically defined quotient. For volume-preserving partially hyperbolic diffeomorphisms whose center foliation is absolutely continuous, if the generic center leaf is a circle, then every center leaf is compact. 
    more » « less
  3. Consider a one-dimensional simple small-amplitude solution (ϱ(bkg), v1(bkg)) to the isentropic compressible Euler equations which has smooth initial data, coincides with a constant state outside a compact set, and forms a shock in finite time. Viewing (ϱ(bkg), v1(bkg)) as a plane-symmetric solution to the full compressible Euler equations in three dimensions, we prove that the shock-formation mechanism for the solution (ϱ(bkg), v1(bkg)) is stable against all sufficiently small and compactly supported perturbations. In particular, these perturbations are allowed to break the symmetry and have nontrivial vorticity and variable entropy. Our approach reveals the full structure of the set of blowup-points at the first singular time: within the constant-time hypersurface of first blowup, the solution’s first-order Cartesian coordinate partial derivatives blow up precisely on the zero level set of a function that measures the inverse foliation density of a family of characteristic hypersurfaces. Moreover, relative to a set of geometric coordinates constructed out of an acoustic eikonal function, the fluid solution and the inverse foliation density function remain smooth up to the shock; the blowup of the solution’s Cartesian coordinate partial derivatives is caused by a degeneracy between the geometric and Cartesian coordinates, signified by the vanishing of the inverse foliation density (i.e., the intersection of the characteristics). 
    more » « less
  4. Given a population longitudinal neuroimaging measurements defined on a brain network, exploiting temporal dependencies within the sequence of data and corresponding latent variables defined on the graph (i.e., network encoding relationships between regions of interest (ROI)) can highly benefit characterizing the brain. Here, it is important to distinguish time-variant (e.g., longitudinal measures) and time-invariant (e.g., gender) components to analyze them individually. For this, we propose an innovative and ground-breaking Disentangled Sequential Graph Autoencoder which leverages the Sequential Variational Autoencoder (SVAE), graph convolution and semi-supervising framework together to learn a latent space composed of time-variant and time-invariant latent variables to characterize disentangled representation of the measurements over the entire ROIs. Incorporating target information in the decoder with a supervised loss let us achieve more effective representation learning towards improved classification. We validate our proposed method on the longitudinal cortical thickness data from Alzheimer’s Disease Neuroimaging Initiative (ADNI) study. Our method outperforms baselines with traditional techniques demonstrating benefits for effective longitudinal data representation for predicting labels and longitudinal data generation. 
    more » « less
  5. Conceptual delay models have played a key role in the analysis and understanding of El Niño-Southern Oscillation (ENSO) variability. Based on such delay models, we propose in this work a novel scenario for the fabric of ENSO variability resulting from the subtle interplay between stochastic disturbances and nonlinear invariant sets emerging from bifurcations of the unperturbed dynamics. To identify these invariant sets we adopt an approach combining Galerkin–Koornwinder (GK) approximations of delay differential equations and center-unstable manifold reduction techniques. In that respect, GK approximation formulas are reviewed and synthesized, as well as analytic approximation formulas of center-unstable manifolds. The reduced systems derived thereof enable us to conduct a thorough analysis of the bifurcations arising in a standard delay model of ENSO. We identify thereby a saddle-node bifurcation of periodic orbits co-existing with a subcritical Hopf bifurcation, and a homoclinic bifurcation for this model. We show furthermore that the computation of unstable periodic orbits (UPOs) unfolding through these bifurcations is considerably simplified from the reduced systems. These dynamical insights enable us in turn to design a stochastic model whose solutions---as the delay parameter drifts slowly through its critical values---produce a wealth of temporal patterns resembling ENSO events and exhibiting also decadal variability. Our analysis dissects the origin of this variability and shows how it is tied to certain transition paths between invariant sets of the unperturbed dynamics (for ENSO’s interannual variability) or simply due to the presence of UPOs close to the homoclinic orbit (for decadal variability). In short, this study points out the role of solution paths evolving through tipping ‘‘points’’ beyond equilibria, as possible mechanisms organizing the variability of certain climate phenomena. 
    more » « less