skip to main content

Title: Absolute continuity, Lyapunov exponents, and rigidity II: systems with compact center leaves
Abstract We explore new connections between the dynamics of conservative partially hyperbolic systems and the geometric measure-theoretic properties of their invariant foliations. Our methods are applied to two main classes of volume-preserving diffeomorphisms: fibered partially hyperbolic diffeomorphisms and center-fixing partially hyperbolic systems. When the center is one-dimensional, assuming the diffeomorphism is accessible, we prove that the disintegration of the volume measure along the center foliation is either atomic or Lebesgue. Moreover, the latter case is rigid in dimension three (this does not require accessibility): the center foliation is actually smooth and the diffeomorphism is smoothly conjugate to an explicit rigid model. A partial extension to fibered partially hyperbolic systems with compact fibers of any dimension is also obtained. A common feature of these classes of diffeomorphisms is that the center leaves either are compact or can be made compact by taking an appropriate dynamically defined quotient. For volume-preserving partially hyperbolic diffeomorphisms whose center foliation is absolutely continuous, if the generic center leaf is a circle, then every center leaf is compact.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Ergodic Theory and Dynamical Systems
Page Range / eLocation ID:
437 to 490
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We show that if a partially hyperbolic diffeomorphism of a Seifert manifold induces a map in the base which has a pseudo-Anosov component then it cannot be dynamically coherent. This extends [C. Bonatti, A. Gogolev, A. Hammerlindl and R. Potrie. Anomalous partially hyperbolic diffeomorphisms III: Abundance and incoherence. Geom. Topol. , to appear] to the whole isotopy class. We relate the techniques to the study of certain partially hyperbolic diffeomorphisms in hyperbolic 3-manifolds performed in [T. Barthelmé, S. Fenley, S. Frankel and R. Potrie. Partially hyperbolic diffeomorphisms homotopic to the identity in dimension 3, part I: The dynamically coherent case. Preprint , 2019, arXiv:1908.06227; Partially hyperbolic diffeomorphisms homotopic to the identity in dimension 3, part II: Branching foliations. Preprint , 2020, arXiv: 2008.04871]. The appendix reviews some consequences of the Nielsen–Thurston classification of surface homeomorphisms for the dynamics of lifts of such maps to the universal cover. 
    more » « less
  2. Abstract

    Let be an Anosov diffeomorphism whose linearization is irreducible. Assume that is also absolutely partially hyperbolic where a weak stable subbundle is considered as the center subbundle. We show that if the strong stable subbundle and the unstable subbundle are jointly integrable, then is dynamically coherent and all foliations match corresponding linear foliation under the conjugacy to the linearization . Moreover, admits the finest dominated splitting in the weak stable subbundle with dimensions matching those for , and it has spectral rigidity along all these subbundles. In dimension 4, we also obtain a similar result by grouping the weak stable and unstable subbundles together as a center subbundle and assuming joint integrability of the strong stable and unstable subbundles. As an application, we show that for every symplectic diffeomorphism that is ‐close to an irreducible nonconformal automorphism , the extremal subbundles of are jointly integrable if and only if is smoothly conjugate to .

    more » « less
  3. We study the Rouquier dimension of wrapped Fukaya categories of Liouville manifolds and pairs, and apply this invariant to various problems in algebraic and symplectic geometry. On the algebro-geometric side, we introduce a new method based on symplectic flexibility and mirror symmetry to bound the Rouquier dimension of derived categories of coherent sheaves on certain complex algebraic varieties and stacks. These bounds are sharp in dimension at most $3$ . As an application, we resolve a well-known conjecture of Orlov for new classes of examples (e.g. toric $3$ -folds, certain log Calabi–Yau surfaces). We also discuss applications to non-commutative motives on partially wrapped Fukaya categories. On the symplectic side, we study various quantitative questions including the following. (1) Given a Weinstein manifold, what is the minimal number of intersection points between the skeleton and its image under a generic compactly supported Hamiltonian diffeomorphism? (2) What is the minimal number of critical points of a Lefschetz fibration on a Liouville manifold with Weinstein fibers? We give lower bounds for these quantities which are to the best of the authors’ knowledge the first to go beyond the basic flexible/rigid dichotomy. 
    more » « less
  4. Abstract

    Consider a three-dimensional partially hyperbolic diffeomorphism. It is proved that under some rigid hypothesis on the tangent bundle dynamics, the map is (modulo finite covers and iterates) an Anosov diffeomorphism, a (generalized) skew-product or the time-one map of an Anosov flow, thus recovering a well-known classification conjecture of the second author to this restricted setting.

    more » « less
  5. Simulating stiff materials in applications where deformations are either not significant or else can safely be ignored is a fundamental task across fields. Rigid body modeling has thus long remained a critical tool and is, by far, the most popular simulation strategy currently employed for modeling stiff solids. At the same time, rigid body methods continue to pose a number of well known challenges and trade-offs including intersections, instabilities, inaccuracies, and/or slow performances that grow with contact-problem complexity. In this paper we revisit the stiff body problem and present ABD, a simple and highly effective affine body dynamics framework, which significantly improves state-of-the-art for simulating stiff-body dynamics. We trace the challenges in rigid-body methods to the necessity of linearizing piecewise-rigid trajectories and subsequent constraints. ABD instead relaxes the unnecessary (and unrealistic) constraint that each body's motion be exactly rigid with a stiff orthogonality potential, while preserving the rigid body model's key feature of a small coordinate representation. In doing so ABD replaces piecewise linearization with piecewise linear trajectories. This, in turn, combines the best of both worlds: compact coordinates ensure small, sparse system solves, while piecewise-linear trajectories enable efficient and accurate constraint (contact and joint) evaluations. Beginning with this simple foundation, ABD preserves all guarantees of the underlying IPC model we build it upon, e.g., solution convergence, guaranteed non-intersection, and accurate frictional contact. Over a wide range and scale of simulation problems we demonstrate that ABD brings orders of magnitude performance gains (two- to three-orders on the CPU and an order more when utilizing the GPU, obtaining 10, 000× speedups) over prior IPC-based methods, while maintaining simulation quality and nonintersection of trajectories. At the same time ABD has comparable or faster timings when compared to state-of-the-art rigid body libraries optimized for performance without guarantees, and successfully and efficiently solves challenging simulation problems where both classes of prior rigid body simulation methods fail altogether. 
    more » « less