This content will become publicly available on December 17, 2025
Title: Genomic streamlining of seagrass-associated Colletotrichum sp. may be related to its adaptation to a marine monocot host
Abstract Colletotrichumspp. have a complicated history of association with land plants. Perhaps most well-known as plant pathogens for the devastating effect they can have on agricultural crops, someColletotrichumspp. have been reported as beneficial plant endophytes. However, there have been only a handful of reports ofColletotrichumspp. isolated from aquatic plant hosts and their ecological role in the marine ecosystem is underexplored. To address this, we present the draft genome and annotation ofColletotrichumsp. CLE4, previously isolated from rhizome tissue from the seagrassZostera marina. This genome (48.03 Mbp in length) is highly complete (BUSCO ascomycota: 98.8%) and encodes 12,015 genes, of which 5.7% are carbohydrate-active enzymes (CAZymes) and 12.6% are predicted secreted proteins. Phylogenetic placement putsColletotrichumsp. CLE4 within theC. acutatumcomplex, closely related toC. godetiae. We found a 8.69% smaller genome size, 21.90% smaller gene count, and the absence of 591 conserved gene families inColletotrichumsp. CLE4 relative to other members of theC. acutatumcomplex, suggesting a streamlined genome possibly linked to its specialized ecological niche in the marine ecosystem. Machine learning analyses using CATAStrophy on CAZyme domains predict this isolate to be a hemibiotroph, such that it has a biotrophic phase where the plant is kept alive during optimal environmental conditions followed by a necrotrophic phase where the fungi actively serves a pathogen. While future work is still needed to definitively tease apart the lifestyle strategy ofColletotrichumsp. CLE4, this study provides foundational insight and a high-quality genomic resource for starting to understand the evolutionary trajectory and ecological adaptations of marine-plant associated fungi. more »« less
MacKenzie, Campbell A.; Marston, Marcia F.; Tabima, Javier F.; Ahlgren, Nathan A.
(, Microbiology Resource Announcements)
Thrash, J. Cameron
(Ed.)
ABSTRACT Marine Synechococcus spp. are unicellular cyanobacteria widely distributed in the world’s oceans. We report the complete genome sequence of Synechococcus sp. strain NB0720_010, isolated from Narragansett Bay, Rhode Island. NB0702_10 has several large (>3,000-amino acid) protein-coding genes that may be important in its interactions with other cells, including grazers in estuarine habitats.
Ettinger, Cassandra L; Eisen, Jonathan A; Stajich, Jason E
(, bioRxiv)
Abstract Fungi play pivotal roles in terrestrial ecosystems as decomposers, pathogens, and endophytes, yet their significance in marine environments is often understudied. Seagrasses, as globally distributed marine flowering plants, have critical ecological functions, but knowledge about their associated fungal communities remains relatively limited. Previous amplicon surveys of the fungal community associated with the seagrass,Zostera marinahave revealed an abundance of potentially novel chytrids. In this study, we employed deep metagenomic sequencing to extract metagenome-assembled genomes (MAGs) from these chytrids and other microbial eukaryotes associated withZ. marinaleaves. Our efforts resulted in the recovery of five eukaryotic MAGs, including a single fungal MAG in the order Loubulomycetales (65% BUSCO completeness), three MAGs representing diatoms in the family Bacillariaceae (93%, 70% and 31% BUSCO completeness) and a single MAG representing a haptophyte algae in the genusPrymnesium(40% BUSCO completeness). Whole-genome phylogenomic assessment of these MAGs suggests they all largely represent under sequenced, and possibly novel eukaryotic lineages. Of particular interest, the chytrid MAG was placed within the order Lobulomycetales, consistent with the identity of the dominant chytrid from previousZ. marinaamplicon survey results. Annotation of this MAG yielded 5,650 gene models of which 77% shared homology to current databases. With-in these gene models, we predicted 121 carbohydrate-active enzymes and 393 secreted proteins (103 cytoplasmic effectors, 30 apoplastic effectors). Exploration of orthologs between the Lobulomycetales MAG and existing Chytridiomycota genomes have revealed a landscape of high-copy gene families related to host recognition and interaction. Further machine learning analyses based on carbohydrate-active enzyme composition predict that this MAG is a symbiont. Overall, these five eukaryotic MAGs represent substantial genomic novelty and valuable community resources, contributing to a deeper understanding of the roles of fungi and other microbial eukaryotes in the larger seagrass ecosystem.
Farrell, Morgan V; Aljaber, Aya M; Amoruso, Madison; Chan, Wyman F; Dael, Jiellen R; De_Tomas, Mathieu L; Delavega, Emily G; Eslava, Jacob M; Holdbrook-Smith, Benjamin J; Lee, Precilla; et al
(, Microbiology Resource Announcements)
Roux, Simon
(Ed.)
ABSTRACT Here, we report the draft genome sequences ofFlagellimonassp. MMG031 andMarinobactersp. MMG032, isolated from coral-associated dinoflagellateSymbiodinium pilosum, assembled and analyzed by undergraduate students participating in a Marine Microbial Genomics (MMG) course. A genomic comparison suggests MMG031 and MMG032 are novel species and a resource for restoration and biotechnology.
Schvarcz, Christopher R.; Wilson, Samuel T.; Caffin, Mathieu; Stancheva, Rosalina; Li, Qian; Turk-Kubo, Kendra A.; White, Angelicque E.; Karl, David M.; Zehr, Jonathan P.; Steward, Grieg F.
(, Nature Communications)
Abstract Persistent nitrogen depletion in sunlit open ocean waters provides a favorable ecological niche for nitrogen-fixing (diazotrophic) cyanobacteria, some of which associate symbiotically with eukaryotic algae. All known marine examples of these symbioses have involved either centric diatom or haptophyte hosts. We report here the discovery and characterization of two distinct marine pennate diatom-diazotroph symbioses, which until now had only been observed in freshwater environments. Rhopalodiaceae diatomsEpithemia pelagicasp. nov. andEpithemia catenatasp. nov. were isolated repeatedly from the subtropical North Pacific Ocean, and analysis of sequence libraries reveals a global distribution. These symbioses likely escaped attention because the endosymbionts lack fluorescent photopigments, havenifHgene sequences similar to those of free-living unicellular cyanobacteria, and are lost in nitrogen-replete medium. Marine Rhopalodiaceae-diazotroph symbioses are a previously overlooked but widespread source of bioavailable nitrogen in marine habitats and provide new, easily cultured model organisms for the study of organelle evolution.
ABSTRACT Microorganisms play a central role in sustaining soil ecosystems and agriculture, and these functions are usually associated with their complex life history. Yet, the regulation and evolution of life history have remained enigmatic and poorly understood, especially in protozoa, the third most abundant group of organisms in the soil. Here, we explore the life history of a cosmopolitan species—Colpoda steinii. Our analysis has yielded a high-quality macronuclear genome forC. steinii, with size of 155 Mbp and 37,123 protein-coding genes, as well as mean intron length of ~93 bp, longer than most other studied ciliates. Notably, we identify two possible whole-genome duplication events inC. steinii, which may account for its genome being about twice the size ofC. inflata’s, another co-existing species. We further resolve the gene expression profiles in diverse life stages ofC. steinii, which are also corroborated inC. inflata. During the resting cyst stage, genes associated with cell death and vacuole formation are upregulated, and translation-related genes are downregulated. While the translation-related genes are upregulated during the excystment of resting cysts. Reproductive cysts exhibit a significant reduction in cell adhesion. We also demonstrate that most genes expressed in specific life stages are under strong purifying selection. This study offers a deeper understanding of the life history evolution that underpins the extraordinary success and ecological functions of microorganisms in soil ecosystems.IMPORTANCEColpodaspecies, as a prominent group among the most widely distributed and abundant soil microorganisms, play a crucial role in sustaining soil ecosystems and promoting plant growth. This investigation reveals their exceptional macronuclear genomic features, including significantly large genome size, long introns, and numerous gene duplications. The gene expression profiles and the specific biological functions associated with the transitions between various life stages are also elucidated. The vast majority of genes linked to life stage transitions are subject to strong purifying selection, as inferred from multiple natural strains newly isolated and deeply sequenced. This substantiates the enduring and conservative nature ofColpoda’s life history, which has persisted throughout the extensive evolutionary history of these highly successful protozoa in soil. These findings shed light on the evolutionary dynamics of microbial eukaryotes in the ever-fluctuating soil environments. This integrative research represents a significant advancement in understanding the life histories of these understudied single-celled eukaryotes.
Ettinger, Cassandra L, Eisen, Jonathan A, and Stajich, Jason E. Genomic streamlining of seagrass-associated Colletotrichum sp. may be related to its adaptation to a marine monocot host. Retrieved from https://par.nsf.gov/biblio/10639796. Web. doi:10.1101/2024.12.17.629027.
Ettinger, Cassandra L, Eisen, Jonathan A, & Stajich, Jason E. Genomic streamlining of seagrass-associated Colletotrichum sp. may be related to its adaptation to a marine monocot host. Retrieved from https://par.nsf.gov/biblio/10639796. https://doi.org/10.1101/2024.12.17.629027
Ettinger, Cassandra L, Eisen, Jonathan A, and Stajich, Jason E.
"Genomic streamlining of seagrass-associated Colletotrichum sp. may be related to its adaptation to a marine monocot host". Country unknown/Code not available: bioRxiv. https://doi.org/10.1101/2024.12.17.629027.https://par.nsf.gov/biblio/10639796.
@article{osti_10639796,
place = {Country unknown/Code not available},
title = {Genomic streamlining of seagrass-associated Colletotrichum sp. may be related to its adaptation to a marine monocot host},
url = {https://par.nsf.gov/biblio/10639796},
DOI = {10.1101/2024.12.17.629027},
abstractNote = {Abstract Colletotrichumspp. have a complicated history of association with land plants. Perhaps most well-known as plant pathogens for the devastating effect they can have on agricultural crops, someColletotrichumspp. have been reported as beneficial plant endophytes. However, there have been only a handful of reports ofColletotrichumspp. isolated from aquatic plant hosts and their ecological role in the marine ecosystem is underexplored. To address this, we present the draft genome and annotation ofColletotrichumsp. CLE4, previously isolated from rhizome tissue from the seagrassZostera marina. This genome (48.03 Mbp in length) is highly complete (BUSCO ascomycota: 98.8%) and encodes 12,015 genes, of which 5.7% are carbohydrate-active enzymes (CAZymes) and 12.6% are predicted secreted proteins. Phylogenetic placement putsColletotrichumsp. CLE4 within theC. acutatumcomplex, closely related toC. godetiae. We found a 8.69% smaller genome size, 21.90% smaller gene count, and the absence of 591 conserved gene families inColletotrichumsp. CLE4 relative to other members of theC. acutatumcomplex, suggesting a streamlined genome possibly linked to its specialized ecological niche in the marine ecosystem. Machine learning analyses using CATAStrophy on CAZyme domains predict this isolate to be a hemibiotroph, such that it has a biotrophic phase where the plant is kept alive during optimal environmental conditions followed by a necrotrophic phase where the fungi actively serves a pathogen. While future work is still needed to definitively tease apart the lifestyle strategy ofColletotrichumsp. CLE4, this study provides foundational insight and a high-quality genomic resource for starting to understand the evolutionary trajectory and ecological adaptations of marine-plant associated fungi.},
journal = {},
publisher = {bioRxiv},
author = {Ettinger, Cassandra L and Eisen, Jonathan A and Stajich, Jason E},
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.