skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 1, 2026

Title: Advancing Civil Engineering Education: Implications of Using Augmented Reality in Teaching Structural Analysis
ABSTRACT As technological advances appear, it is desirable to integrate them into new engineering education teaching methods, aiming to enhance students' comprehension and engagement with complex subjects. Augmented reality (AR) emerges as a promising tool in this effort, offering students opportunities to visualize and conceptualize challenging topics that are otherwise too abstract or difficult to grasp. Within civil engineering curriculums, structural analysis, a junior‐level course forming the foundation of many other courses, poses challenges in visualization and understanding. This paper investigates the development of a mobile AR application intended to improve the conceptual understanding of structural analysis material. This application is designed to overlay schematic representations of structural components (i.e., beams, columns, frames, and trusses) onto images of iconic local campus buildings, allowing students to interactively explore exaggerated deflections and internal and external forces under various loading conditions. By contextualizing structural analysis calculations within familiar settings, the goal is to leverage a sense of relevance and place‐based attachments in students' learning. Furthermore, the paper examines the development process and usability of the AR application, providing insights into its implementation in educational settings. Experimental results, including comparisons with a control group, are analyzed to assess the efficacy of the AR application in improving students' understanding of structural analysis concepts. Furthermore, the paper examines the development process and usability of the AR application, providing insights into its implementation in educational settings. Perspectives from structural analysis faculty members are also discussed, shedding light on the potential benefits and challenges associated with integrating AR technology into engineering education. In addition, the study highlights the value of place‐based learning, wherein students engage with real‐world structures in their immediate environment, fostering deeper connections between theoretical concepts and practical applications. Overall, this research contributes to the growing body of literature on innovative teaching approaches in engineering education and highlights the potential of AR as a valuable tool for enhancing student learning experiences in structural analysis and related disciplines.  more » « less
Award ID(s):
1751844
PAR ID:
10639885
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Computer Applications in Engineering Education
Volume:
33
Issue:
4
ISSN:
1061-3773
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Educational research supports incorporating active engagement into K-12 education using authentic STEM experiences. While there are discipline-specific resources to provide students with such experiences, there are limited transdisciplinary opportunities that integrate engineering education and technological skill-building to contextualize core scientific concepts. Here, we present an adaptable module that integrates hands-on technology education and place-based learning to improve student understanding of key chemistry concepts as they relate to local environmental science. The module also supports disciplinary core ideas, practices, and cross-cutting concepts in accordance with the Next Generation Science Standards. We field-tested our module in three different high school courses: Chemistry, Oceanography and Advanced Placement Environmental Science at schools in Washington, USA. Students built spectrophotometric pH sensors using readily available electronic components and calibrated them with known pH reference standards. Students then used their sensors to measure the pH of local environmental water samples. Assessments showed significant improvement in content knowledge in all three courses relating to environmental relevance of pH, and to the design, use and environmental application of sensors. Students also reported increased self-confidence in the material, even when their content knowledge remained the same. These findings suggest that classroom sensor building and collection of environmental data increases student understanding and self-confidence by connecting chemistry concepts to local environmental settings. 
    more » « less
  2. Pedagogical innovation efforts in engineering education and other STEM fields highlight some of the inherent challenges and opportunities in the process of strengthening undergraduate education. While interactive pedagogical approaches involving peer teamwork and a mix of in-person and online resources have strengthened the quality of teaching/learning, few studies provide a close-up examination of how faculty members navigate the implementation of new learning systems developed in other institutional settings. In this paper we examine factors contributing to the lack of sustained adoption of an engineering learning system called Freeform in a new academic context. We found that while students lauded the learning system’s potential for deep learning practices, the lead instructor encountered several challenges in its implementation which precluded him from adopting the system in the long term. While the lead instructor recognized the pedagogical value of Freeform in helping students engage deeply with engineering concepts, he found its implementation to differ too greatly from his traditional teaching trajectory in addition to increasing his preparation workload and having other logistical barriers. Ultimately, Freeform was not compatible with the specific institutional culture of the engineering department where the study took place. We offer some potential solutions to ameliorate issues of compatibility when attempting to diffuse and implement pedagogical systems in different institutional contexts. 
    more » « less
  3. Prairie ecosystems, once expansive across North America, have faced significant degradation and fragmentation due to expanding agricultural development (World Wildlife Fund, 2023). Efforts to survey and restore prairies offer a unique opportunity for applied learning in environmental education. This paper explores the potential of prairie survey and restoration projects to enhance students' applied learning experiences and develop practical skills in ecological research, biodiversity conservation, and sustainable land management. Drawing upon interdisciplinary perspectives from ecology, education, and community engagement, and utilizing flora survey of the John Rushin Teaching and Research Prairie at Missouri Western State University as a model for applied learning, this paper examines the educational benefits of prairie survey and restoration and provides recommendations for integrating these activities into formal and informal educational settings. By engaging students in hands-on activities, we aim to enhance understanding, foster environmental stewardship, and contribute to effective prairie restoration. 
    more » « less
  4. Besides its use as a powerful systems analysis tool, simulation has also been used for decades in educational settings as a teaching and learning method. Simulation can replace or augment real-world inquiry-based experiences by providing learners with a low-cost and risk-free experimentation platform to develop knowledge and skills in a simulated environment. This paper presents an overview of current applications and the ongoing transition from physical experimentation to digital simulations and immersive simulated learning environments in engineering education. The paper highlights major implementation and research gaps related to simulation-based learning and immersive simulated learning environments, namely, lack of integration with learning theories and limited formal assessments of effectiveness. Potential implementation approaches and important areas for future educational research are discussed and exemplified in response to the identified gaps. The discussions presented are intended for simulationists, educational researchers, and instructors who are interested in designing and/or utilizing engineering education interventions involving simulated learning environments and immersive technologies in their teaching and educational research. In particular, the Immersive Simulation-Based Learning (ISBL) approach discussed in the paper provides a framework for simulationists to reuse the models developed as part of their simulation projects for educational purposes. 
    more » « less
  5. A critical learning outcome of undergraduate engineering mechanics courses is the ability to understand how a structure's internal forces and bending moment will change in response to static and dynamic loads. One of the major challenges associated with both teaching and learning these concepts is the invisible nature of the internal effects. Although concentrated forces applied to the top of the beam can be easily visualized, observing the corresponding changes in the shear and bending moment diagrams is not a trivial task. Nonetheless, proficiency in this concept is vital for students to succeed in subsequent mechanics courses and, ultimately, as a professional practitioner. One promising technology that can enable students to see the invisible internal effects is augmented reality (AR), where virtual or digital objects can be seen through a device such as a smart phone or headset. This paper describes the proof-of-concept development of a Unity®-based AR application called "AR Stairs" that allows students to visualize (in-situ) the relative magnitude of the internal bending moment in an actual structure. The app is specifically tailored to an existing 40-foot long, 16-foot high steel staircase structure located at the authors' institution. This paper details the application design, analysis assumptions, calculations, technical challenges encountered, development environment, and content development. The key features of the app are discussed, which include: (a) coordinate system identification and placement, (b) automatic mapping of a stairs model in-situ, (c) creation of a virtual 2-dimensional staircase model, (d) object detection and tracking of people moving on the stairs, (e) image recognition to approximate people's weight, (f) overlays of virtual force vectors onto moving people, and (g) use of a chromatic scale to visually convey the relative intensity of the internal bending moment at nodes spaced over the length of the structure. It is the authors' intention to also provide the reader with an overall picture of the resources needed to develop AR applications for use in pedagogical settings, the design decision tradeoffs, and practical issues related to deployment. As AR technologies continually improve, they are expected to become an integral part of the pedagogical toolset used by engineering educators to improve the quality of education delivered to engineering students. 
    more » « less