skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 1, 2026

Title: The crescent cross-section and dichotomous chitin structure make the proboscis of butterflies and moths a hydraulic spring
The proboscis of butterflies and moths is made of two C-shaped tubular strands, each with a crescent cross-section. Together, they form a food canal for fluid uptake. Each strand is sealed at the free end and blood is pumped in at the head. The accepted scenario for proboscis uncoiling assumes that intrinsic muscles deform the proboscis walls like fingers pressing a bicycle tire, decreasing the cross-sectional area and displacing blood that pushes the external walls outward, as does the air in the tire. This scenario requires the external walls of the strands to be softer than the food canal walls. We tensile-tested the proboscis of Manduca sexta hawk moths and discovered that the food canal walls are softer than the external walls, contradicting the accepted scenario. We hypothesize that the proboscis works as a hydraulic spring, requiring no muscular action to uncoil. The model supports this hypothesis: the pump pressurizes the blood, which pushes on the food canal walls, buckling them inward. The crescent edges along which the strands are connected are free to move loosening the coil and unrolling the proboscis. Using X-ray scattering and assuming the same cuticle matrix for both walls of the crescent strands, we showed that the difference in cuticular stiffnesses is achieved through a unidirectional ordering of α-chitin nanofibrils aligned mutually orthogonal in the food canal and external walls of the proboscis, making it a transversely anisotropic tubular composite and preventing buckling. This arrangement opens new engineering opportunities for multifunctional fiber-based hydraulic springs in micromachines.  more » « less
Award ID(s):
2422802
PAR ID:
10640035
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Acta Biomaterialia
ISSN:
1742-7061
Subject(s) / Keyword(s):
proboscis, shell mechanics, X-ray analysis, chitin, cuticle, Lepidoptera
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Spencer, Barrett (Ed.)
    Current biomechanical models suggest that butterflies and moths use their proboscis as a drinking straw pulling nectar as a continuous liquid column. Our analyses revealed an alternative mode for fluid uptake: drinking bubble trains that help defeat drag. We combined X-ray phase-contrast imaging, optical video microscopy, micro-computed tomography, phylogenetic models of evolution and fluid mechanics models of bubble-train formation to understand the biomechanics of butterfly and moth feeding. Our models suggest that the bubble-train mechanism appeared in the early evolution of butterflies and moths with a proboscis long enough to coil. We propose that, in addition to the ability to drink a continuous column of fluid from pools, the ability to exploit fluid films by capitalizing on bubble trains would have expanded the range of available food sources, facilitating diversification of Lepidoptera. 
    more » « less
  2. Hovering hawkmoths expend significant energy while feeding, which should select for greater feeding efficiency. Although increased feeding efficiency has been implicitly assumed, it has never been assessed. We hypothesized that hawkmoths have proboscises specialized for gathering nectar passively. Using contact angle and capillary pressure to evaluate capillary action of the proboscis, we conducted a comparative analysis of wetting and absorption properties for 13 species of hawkmoths. We showed that all 13 species have a hydrophilic proboscis. In contradistinction, the proboscises of all other tested lepidopteran species have a wetting dichotomy with only the distal ∼10% hydrophilic. Longer proboscises are more wettable, suggesting that species of hawkmoths with long proboscises are more efficient at acquiring nectar by the proboscis surface than are species with shorter proboscises. All hawkmoth species also show strong capillary pressures which, together with the feeding behaviors we observed, ensure that nectar will be delivered to the food canal efficiently. The patterns we found suggest that different subfamilies of hawkmoths use different feeding strategies. Our comparative approach reveals that hawkmoths are unique among Lepidoptera and highlights the importance of considering the physical characteristics of the proboscis to understand the evolution and diversification of hawkmoths. 
    more » « less
  3. Precast concrete shear walls with unbonded post-tensioning, which resist seismic loads have attracted the attention of researchers over the past 20 years. This study provides a database of a special subset of precast concrete shear walls tested under monotonic or cyclic loading: rocking walls, hybrid walls, and walls with end columns. These shear walls experience joint opening, undergo rocking motion over the foundation, and utilize unbonded post-tensioning to self-center after load removal. Seismic energy is dissipated in distinct ways that vary from nonlinearity of concrete and post-tensioning strands (rocking walls) to yielding of mild steel reinforcement or external energy dissipaters (hybrid walls and walls with end columns). The experimental drift capacity, strength, and damage sequence of walls from the literature were compiled. Onsets of cover concrete spalling, yielding of energy dissipaters, yielding of post-tensioning strands, fracture of energy dissipaters, and crushing of confined concrete were reported. ACI guidance on shear walls were evaluated by comparing the lateral drift and strength measured by testing and predicted by ACI. 
    more » « less
  4. null (Ed.)
    Precast concrete shear walls with unbonded post-tensioning, which resist seismic loads have attracted the attention of researchers over the past 20 years. This study provides a database of a special subset of precast concrete shear walls tested under monotonic or cyclic loading: rocking walls, hybrid walls, and walls with end columns. These shear walls experience joint opening, undergo rocking motion over the foundation, and utilize unbonded post-tensioning to self-center after load removal. Seismic energy is dissipated in distinct ways that vary from nonlinearity of concrete and post-tensioning strands (rocking walls) to yielding of mild steel reinforcement or external energy dissipaters (hybrid walls and walls with end columns). The experimental drift capacity, strength, and damage sequence of walls from the literature were compiled. Onsets of cover concrete spalling, yielding of energy dissipaters, yielding of post-tensioning strands, fracture of energy dissipaters, and crushing of confined concrete were reported. ACI guidance on shear walls were evaluated by comparing the lateral drift and strength measured by testing and predicted by ACI. 
    more » « less
  5. Abstract Bone modeling and remodeling are aerobic processes that entail relatively high oxygen demands. Long bones receive oxygenated blood from nutrient arteries, epiphyseal‐metaphyseal arteries, and periosteal arteries, with the nutrient artery supplying the bulk of total blood volume in mammals (~ 50–70%). Estimates of blood flow into these bones can be made from the dimensions of the nutrient canal, through which nutrient arteries pass. Unfortunately, measuring these canal dimensions non‐invasively (i.e. without physical sectioning) is difficult, and thus researchers have relied on more readily visible skeletal proxies. Specifically, the size of the nutrient artery has been estimated from dimensions (e.g. minimum diameters) of the periosteal (external) opening of the nutrient canal. This approach has also been utilized by some comparative morphologists and paleontologists, as the opening of a nutrient canal is present long after the vascular soft tissue has degenerated. The literature on nutrient arteries and canals is sparse, with most studies consisting of anatomical descriptions from surgical proceedings, and only a few investigating the links between nutrient canal morphology and physiology or behavior. The primary objective of this study was to evaluate femur nutrient canal morphology in mice with known physiological and behavioral differences; specifically, mice from an artificial selection experiment for high voluntary wheel‐running behavior. Mice from four replicate high runner (HR) lines are known to differ from four non‐selected control (C) lines in both locomotor and metabolic activity, withHRmice having increased voluntary wheel‐running behavior and maximal aerobic capacity (VO2max) during forced treadmill exercise. Femora from adult mice (average age 7.5 months) of the 11th generation of this selection experiment were μCT‐scanned and three‐dimensional virtual reconstructions of nutrient canals were measured for minimum cross‐sectional area as a skeletal proxy of blood flow. Gross observations revealed that nutrient canals varied far more in number and shape than prior descriptions would indicate, regardless of sex or genetic background (i.e.HRvs. C lines). Canals adopted non‐linear shapes and paths as they traversed from the periosteal to endosteal borders through the cortex, occasionally even branching within the cortical bone. Additionally, mice from bothHRand C lines averaged more than four nutrient canals per femur, in contrast to the one to two nutrient canals described for femora from rats, pigs, and humans in prior literature. Mice fromHRlines had significantly larger total nutrient canal area than C lines, which was the result not of an increase in the number of nutrient canals, but rather an increase in their average cross‐section size. This study demonstrates that mice with an evolutionary history of increased locomotor activity and maximal aerobic metabolic rate have a concomitant increase in the size of their femoral nutrient canals. Although the primary determinant of nutrient canal size is currently not well understood, the present results bolster use of nutrient canal size as a skeletal indicator of aerobically supported levels of physical activity in comparative studies. 
    more » « less