- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
02
- Author / Contributor
- Filter by Author / Creator
-
-
Brasovs, Artis (2)
-
Kornev, Konstantin G (2)
-
Adler, Peter H (1)
-
Beard, Charles E (1)
-
Blouin, Vincent Y (1)
-
Stepanova, Tatiana (1)
-
Yoshioka, Taiyo (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The proboscis of butterflies and moths is made of two C-shaped tubular strands, each with a crescent cross-section. Together, they form a food canal for fluid uptake. Each strand is sealed at the free end and blood is pumped in at the head. The accepted scenario for proboscis uncoiling assumes that intrinsic muscles deform the proboscis walls like fingers pressing a bicycle tire, decreasing the cross-sectional area and displacing blood that pushes the external walls outward, as does the air in the tire. This scenario requires the external walls of the strands to be softer than the food canal walls. We tensile-tested the proboscis of Manduca sexta hawk moths and discovered that the food canal walls are softer than the external walls, contradicting the accepted scenario. We hypothesize that the proboscis works as a hydraulic spring, requiring no muscular action to uncoil. The model supports this hypothesis: the pump pressurizes the blood, which pushes on the food canal walls, buckling them inward. The crescent edges along which the strands are connected are free to move loosening the coil and unrolling the proboscis. Using X-ray scattering and assuming the same cuticle matrix for both walls of the crescent strands, we showed that the difference in cuticular stiffnesses is achieved through a unidirectional ordering of α-chitin nanofibrils aligned mutually orthogonal in the food canal and external walls of the proboscis, making it a transversely anisotropic tubular composite and preventing buckling. This arrangement opens new engineering opportunities for multifunctional fiber-based hydraulic springs in micromachines.more » « lessFree, publicly-accessible full text available September 1, 2026
-
Brasovs, Artis; Kornev, Konstantin G (, Journal of Science: Advanced Materials and Devices)Probing the flexural rigidity of micropillars and microfibers is challenging as they are short and difficult to handle. We developed a magnetic torque methodology where a coil-generated uniform magnetic field acts on a magnetic microrod attached to the fiber end, forcing it to turn. It is shown that magnetic torque bends microfibers in a circular arc, whose radius depends on the flexural rigidity. Magnetic microrods were fabricated by electroplating nickel on tungsten microwires. The methodology was validated with synthetic microfibers. Available magnetic stages for optical microscopes offering uniform magnetic fields within a millimeter-wide spot can be implemented to study a variety of beam-like microstructures.more » « lessFree, publicly-accessible full text available September 1, 2026
An official website of the United States government
