skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Revealing a Pathway for Low‐Temperature Recrystallization in Germanium
Abstract Thermally activated annealing in semiconductors faces inherent limitations, such as dopant diffusion. Here, a nonthermal pathway is demonstrated for a complete structural restoration in predamaged germanium via ionization‐induced recovery. By combining experiments and modeling, this study reveals that the energy transfer of only 2.4 keV nm−1from incident ions to target electrons can effectively annihilate pre‐existing defects and restore the original crystalline structure at room temperature. Moreover, it is revealed that the irradiation‐induced crystalline‐to‐amorphous (c/a) transformation in Ge is reversible, a phenomenon previously considered unattainable without additional thermal energy imposed during irradiation. For partially damaged Ge, the overall damage fraction decreases exponentially with increasing fluence. Surprisingly, the recovery process in preamorphized Ge starts with defect recovery outside the amorphous layer and a shrinkage of the amorphous thickness. After this initial stage, the remaining damage decreases slowly with increasing fluence, but full restoration of the pristine state is not achieved. These differences in recovery are interpreted in the framework of structural differences in the initial defective layers that affect recovery kinetics. This study provides new insights on reversing the c/a transformation in Ge using highly‐ionizing irradiation and has broad implications across materials science, radiation damage mitigation, and fabrication of Ge‐based devices.  more » « less
Award ID(s):
2104228
PAR ID:
10640297
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Science
Volume:
12
Issue:
41
ISSN:
2198-3844
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Microstructural changes induced by helium implantation in materials lead to volumetric swelling and mechanical property changes. How these properties are linked and establishing direct relationships can be difficult due to the underlying material’s microstructure evolution. Some materials also experience a phase change due to irradiation damage making them even more complex to analyze. Here, single crystalline Si (100) was used to establish a relationship among these parameters. The swelling height as a function of implantation fluence can equally fit a linear relationship. Solely irradiation induced defects are observed at low fluence below 5.0 × 10 16  ions/cm 2 . An abrupt amorphous and crystalline mixed layer of ∼200 nm thick within a highly damaged polycrystalline matrix is observed when implantation fluence exceeds 5.0 × 10 16  ions/cm 2 , leading to the appearance of irradiation induced swelling and hardening behavior. As the fluence increases beyond 1.0 × 10 17  ions/cm 2 , the amorphous layer expands in size and the bubble size distribution takes the form of a Gaussian distribution with a maximum size of up to 6.4 nm, which causes a further increase in the height of swelling. Furthermore, irradiation induced softening appeared due to the enlarged bubble size and amorphization. 
    more » « less
  2. Silicon surface amorphization by short pulse laser irradiation is a phenomenon of high importance for device manufacturing and surface functionalization. To provide insights into the processes responsible for laser-induced amorphization, a multiscale computational study combining atomistic molecular dynamics simulations of nonequilibrium phase transformations with continuum-level modeling of laser-induced melting and resolidification is performed. Atomistic modeling provides the temperature dependence of the melting/solidification front velocity, predicts the conditions for the transformation of the undercooled liquid to the amorphous state, and enables the parametrization of the continuum model. Continuum modeling, performed for laser pulse durations from 30 ps to 1.5 ns, beam diameters from 5 to 70 μm, and wavelengths of 532, 355, and 1064 nm, reveals the existence of two threshold fluences for the generation and disappearance of an amorphous surface region, with the kinetically stable amorphous phase generated at fluences between the lower and upper thresholds. The existence of the two threshold fluences defines the spatial distribution of the amorphous phase within the laser spot irradiated by a pulse with a Gaussian spatial profile. Depending on the irradiation conditions, the formation of a central amorphous spot, an amorphous ring pattern, and the complete recovery of the crystalline structure are predicted in the simulations. The decrease in the pulse duration or spot diameter leads to an accelerated cooling at the crystal–liquid interface and contributes to the broadening of the range of fluences that produce the amorphous region at the center of the laser spot. The dependence of the amorphization conditions on laser fluence, pulse duration, wavelength, and spot diameter, revealed in the simulations, provides guidance for the development of new applications based on controlled, spatially resolved amorphization of the silicon surface. 
    more » « less
  3. Understanding of structural and morphological evolution in nanomaterials is critical in tailoring their functionality for applications such as energy conversion and storage. Here, we examine irradiation effects on the morphology and structure of amorphous TiO2 nanotubes in comparison with their crystalline counterpart, anatase TiO2 nanotubes, using high-resolution transmission electron microscopy (TEM), in situ ion irradiation TEM, and molecular dynamics (MD) simulations. Anatase TiO2 nanotubes exhibit morphological and structural stability under irradiation due to their high concentration of grain boundaries and surfaces as defect sinks. On the other hand, amorphous TiO2 nanotubes undergo irradiation-induced crystallization, with some tubes remaining only partially crystallized. The partially crystalline tubes bend due to internal stresses associated with densification during crystallization as suggested by MD calculations. These results present a novel irradiation-based pathway for potentially tuning structure and morphology of energy storage materials. 
    more » « less
  4. High-energy electrons induce sample damage and motion at the nanoscale to fundamentally limit the determination of molecular structures by electron diffraction. Using a fast event-based electron counting (EBEC) detector, we characterize beam-induced, dynamic, molecular crystal lattice reorientations (BIRs). These changes are sufficiently large to bring reciprocal lattice points entirely in or out of intersection with the sphere of reflection, occur as early events in the decay of diffracted signal due to radiolytic damage, and coincide with beam-induced migrations of crystal bend contours within the same fluence regime and at the same illuminated location on a crystal. These effects are observed in crystals of biotin, a series of amino acid metal chelates, and a six-residue peptide, suggesting that incident electrons inevitably warp molecular lattices. The precise orientation changes experienced by a given microcrystal are unpredictable but are measurable by indexing individual diffraction patterns during beam-induced decay. Reorientations can often tilt a crystal lattice several degrees away from its initial position before irradiation, and for an especially beam-sensitive Zn(II)-methionine chelate, are associated with dramatic crystal quakes prior to 1 e Å−2electron beam fluence accumulates. Since BIR coincides with the early stages of beam-induced damage, it echoes the beam-induced motion observed in single-particle cryoEM. As with motion correction for cryoEM imaging experiments, accounting for BIR-induced errors during data processing could improve the accuracy of MicroED data. 
    more » « less
  5. Ni-SiOC nanocomposites maintain crystal-amorphous dual-phase nanostructures after high-temperature annealing at different temperatures (600 °C, 800 °C and 1000 °C), while the feature sizes of crystal Ni and amorphous SiOC increase with the annealing temperature. Corresponding to the dual-phase nanostructures, Ni-SiOC nanocomposites exhibit a high strength and good plastic flow stability. In this study, we conducted a He implantation in Ni-SiOC nanocomposites at 300 °C by in-situ transmission electron microscope (TEM) irradiation test. In-situ TEM irradiation revealed that both crystal Ni and amorphous SiOC maintain stability under He irradiation. The 600 °C annealed sample presents a better He irradiation resistance, as manifested by a smaller He-bubble size and lower density. Both the grain boundary and crystal-amorphous phase boundary act as a sink to absorb He and irradiation-induced defects in the Ni matrix. More importantly, amorphous SiOC ceramic is immune to He irradiation damage, contributing to the He irradiation resistance of Ni alloy. 
    more » « less