skip to main content

Title: In-Situ TEM Investigation of Helium Implantation in Ni-SiOC Nanocomposites

Ni-SiOC nanocomposites maintain crystal-amorphous dual-phase nanostructures after high-temperature annealing at different temperatures (600 °C, 800 °C and 1000 °C), while the feature sizes of crystal Ni and amorphous SiOC increase with the annealing temperature. Corresponding to the dual-phase nanostructures, Ni-SiOC nanocomposites exhibit a high strength and good plastic flow stability. In this study, we conducted a He implantation in Ni-SiOC nanocomposites at 300 °C by in-situ transmission electron microscope (TEM) irradiation test. In-situ TEM irradiation revealed that both crystal Ni and amorphous SiOC maintain stability under He irradiation. The 600 °C annealed sample presents a better He irradiation resistance, as manifested by a smaller He-bubble size and lower density. Both the grain boundary and crystal-amorphous phase boundary act as a sink to absorb He and irradiation-induced defects in the Ni matrix. More importantly, amorphous SiOC ceramic is immune to He irradiation damage, contributing to the He irradiation resistance of Ni alloy.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Publisher / Repository:
Date Published:
Journal Name:
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Crystalline metals generally exhibit good deformability but low strength and poor irradiation tolerance. Amorphous materials in general display poor deformability but high strength and good irradiation tolerance. Interestingly, refining characteristic size can enhance the flow strength of crystalline metals and the deformability of amorphous materials. Thus, crystalline–amorphous nanostructures can exhibit an enhanced strength and an improved plastic flow stability. In addition, high-density interfaces can trap radiation-induced defects and accommodate free volume fluctuation. In this article, we review crystalline–amorphous nanocomposites with characteristic microstructures including nanolaminates, core–shell microstructures, and crystalline/amorphous-based dual-phase nanocomposites. The focus is put on synthesis of characteristic microstructures, deformation behaviors, and multiscale materials modelling.

    more » « less
  2. null (Ed.)
    Thermal stability of oxide–metal nanocomposites is important for designing practical devices for high temperature applications. Here, we study the thermal stability of the self-assembled ordered three-phase Au–BaTiO 3 –ZnO nanocomposite by both ex situ annealing under air and vacuum conditions, and by in situ heating in TEM in a vacuum. The study reveals that the variation of the annealing conditions greatly affects the resulting microstructure and the associated dominant diffusion mechanism. Specifically, Au nanoparticles show coarsening upon air annealing, while Au and Zn either form a solid solution, with Zn atomic percentage less than 10%, or undergo a reverse Vapor–Liquid–Solid (VLS) mechanism upon vacuum annealing. The distinct microstructures obtained also show different permittivity response in the visible and near-infrared region, while retaining their hyperbolic dispersion characteristics enabled by their highly anisotropic structures. Such in situ heating study in TEM provides critical information about microstructure evolution, growth mechanisms at the nanoscale, and thermal stability of the multi-phase nanocomposites for future electronic device applications. 
    more » « less
  3. Abstract

    In this study, novel ferromagnetic Ni‐containing silicon oxycarbide (SiOC–Ni) was successfully fabricated from a base polysiloxane (PSO) with the addition of nickel 2,4‐pentanedionate. The resultant SiOC–Ni nanocomposite consists of in situ formed Ni nanocrystallites with a small amount of NiO uniformly dispersed in the amorphous SiOC matrix, and the corresponding nanocrystallite size increases with the increase of the pyrolysis temperature. The formation of nickel silicides (NixSiy) is completely suppressed by the effect of water vapor during the pyrolysis. The fundamental phase evolution process and mechanisms are explained. In an argon atmosphere, the SiOC–Ni materials pyrolyzed at 900°C are stable up to 1000°C with less than 6 wt% weight loss; they exhibit desirable electrical conductivity up to ~900°C with the highest electrical conductivity at ~247 S/m. This series of SiOC–Ni materials also demonstrates exciting ferromagnetic behaviors. Their new semiconducting behavior with soft ferromagnetism presents promising application potentials for magnetic sensors, transformers, actuators, etc.

    more » « less
  4. As one candidate alloy for future Generation IV and fusion reactors, a dual-phase 12Cr oxide-dispersion-strengthened (ODS) alloy was developed for high temperature strength and creep resistance and has shown good void swelling resistance under high damage self-ion irradiation at high temperature. However, the effect of helium and its combination with radiation damage on oxide dispersoid stability needs to be investigated. In this study, 120 keV energy helium was preloaded into specimens at doses of 1 × 1015 and 1 × 1016 ions/cm2 at room temperature, and 3.5 MeV Fe self-ions were sequentially implanted to reach 100 peak displacement-per-atom at 475 °C. He implantation alone in the control sample did not affect the dispersoid morphology. After Fe ion irradiation, a dramatic increase in density of coherent oxide dispersoids was observed at low He dose, but no such increase was observed at high He dose. The study suggests that helium bubbles act as sinks for nucleation of coherent oxide dispersoids, but dispersoid growth may become difficult if too many sinks are introduced, suggesting that a critical mass of trapping is required for stable dispersoid growth. 
    more » « less
  5. Abstract

    Amorphous silicon oxycarbides are known to be an effective anode material for lithium‐ion batteries. Despite their exceptional properties and high charge capacities, however, their practical uses are limited by their significant first‐cycle loss, considerable hysteresis, and low cyclic ability. Comparatively, SiOC/metal oxide materials have demonstrated increased rate capability and cyclic stability. This study utilized a liquid precursor‐derived ceramic method to modify SiOC with titanium (IV) butoxide precursor to synthesize SiOC/TiOxCy. X‐ray diffractograms confirmed the amorphous nature of SiOC/TiOxCy. The elemental composition and bonding properties were investigated using X‐ray photoelectron spectroscopy, and electron microscopy was used to explore morphological features. In the first cycle, the reversible capacity of pyrolyzed SiOC/TiOxCywas 520 mAh g−1, which then increased to 736 mAh g−1for the 1200°C annealed SiOC/TiOxCydue to the increased free carbon network and TiC conductive phases. The irreversible capacity of the first cycle was 568 mAh g−1, which was lower than the annealed SiOC irreversible capacity of 695 mAh g−1. Interestingly, the rate stability of the pyrolyzed SiOC/TiOxCyperformed more stability than the annealed sample. Localized carbothermal reactions between amorphous SiOC/TiOxCyand free carbon at annealing temperatures resulted in loss of structure stability.

    more » « less