Abstract Biological processes require concerted function of many channels embedded in the cell membrane. While single solid‐state nanopores are already designed to mimic properties of individual biological channels, it is not yet known how to connect the pores to achieve biomimetic ionic circuits with interacting components. To identify fundamental processes that control interactions between nanopores embedded in the same membrane, a model system of minimal arrays consisting of two and three nanopores in silicon nitride films is designed. The constituent nanopores have an opening diameter <10 nm, and the interpore spacing is tuned between 15 and 200 nm. The experimental and modeling results reveal that nanopores in an array interact with each other via overlapping depletion zones created by the process of concentration polarization. The interactions can be further controlled by salt concentration and voltage. These results showcase a possibility of tuning interactions between nanopores and transport properties of arrays by chemical modification of the pore walls. Arrays consisting of nanoporous ionic diodes feature depletion zones with higher concentrations, and lower current suppression than homogeneously charged pores. These experiments and modeling provide the first steps to leave the constraints of single nanopores and to design biomimetic ionic circuits.
more »
« less
Heterogeneous Nanopore Arrays – Selective Modification of Nanopores Embedded in a Membrane
Abstract Much effort in the field of nanopore research has been directed toward reproducing the efficient transport phenomena of biological ion channels. For synthetic nanopores to replicate channel function on the scale of a cellular membrane, it is necessary to consider the modes of crosstalk between channels as well as to develop approaches to prepare nanopore arrays consisting of pores with different transport properties, akin to a membrane in an axon. In this manuscript, first ion concentration polarization (ICP) is identified as the primary means of the crosstalk, and subsequently, the extent and degree of ICP is tuned via targeted chemical modification of the pore walls’ functional groups. Next, two fabrication methods of a model two‐nanopore array are presented in a silicon nitride membrane in which one nanopore contains a bipolar ionic junction and functions as an ionic diode, while the other one is a homogeneously charged ionic resistor. The targeted chemical modification of a thin gold layer at the opening of one pore in an array that leaves the other pore located a few tens of nm away, unmodified, is utilized. These results provide an important framework for designing abiotic ionic circuits that can mimic physiological multichannel ion transport and communication.
more »
« less
- Award ID(s):
- 2200524
- PAR ID:
- 10640364
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials
- ISSN:
- 0935-9648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Reproducing the exquisite ion selectivity displayed by biological ion channels in artificial nanopore systems has proven to be one of the most challenging tasks undertaken by the nanopore community, yet a successful achievement of this goal offers immense technological potential. Here, we show a strategy to design solid-state nanopores that selectively transport potassium ions and show negligible conductance for sodium ions. The nanopores contain walls decorated with 4′-aminobenzo-18-crown-6 ether and single-stranded DNA (ssDNA) molecules located at one pore entrance. The ionic selectivity stems from facilitated transport of potassium ions in the pore region containing crown ether, while the highly charged ssDNA plays the role of a cation filter. Achieving potassium selectivity in solid-state nanopores opens new avenues toward advanced separation processes, more efficient biosensing technologies, and novel biomimetic nanopore systems.more » « less
-
Abstract Recent studies of the high energy‐conversion efficiency of the nanofluidic platform have revealed the enormous potential for efficient exploitation of electrokinetic phenomena in nanoporous membranes for clean‐energy harvesting from salinity gradients. Here, nanofluidic reverse electrodialysis (NF‐RED) consisting of vertically aligned boron‐nitride‐nanopore (VA‐BNNP) membranes is presented, which can efficiently harness osmotic power. The power density of the VA‐BNNP reaches up to 105 W m−2, which is several orders of magnitude higher than in other nanopores with similar pore sizes, leading to 165 mW m−2of net power density (i.e., power per membrane area). Low‐pressure chemical vapor deposition technology is employed to uniformly deposit a thin BN layer within 1D anodized alumina pores to prepare a macroscopic VA‐BNNP membrane with a high nanopore density, ≈108pores cm−2. These membranes can resolve fundamental questions regarding the ion mobility, liquid transport, and power generation in highly charged nanopores. It is shown that the transference number in the VA‐BNNP is almost constant over the entire salt concentration range, which is different from other nanopore systems. Moreover, it is also demonstrated that the BN deposition on the nanopore channels can significantly enhance the diffusio‐osmosis velocity by two orders of magnitude at a high salinity gradient, resulting in a huge increase in power density.more » « less
-
Abstract Integrated circuits are present in all electronic devices, and enable signal amplification, modulation, and relay. Nature uses another type of circuits composed of channels in a cell membrane, which regulate and amplify transport of ions, not electrons and holes as is done in electronic systems. Here we show an abiotic ionic circuit that is inspired by concepts from electronics and biology. The circuit amplifies small ionic signals into ionic outputs, and its operation mimics the electronic Darlington amplifier composed of transistors. The individual transistors are pores equipped with three terminals including a gate that is able to enrich or deplete ions in the pore. The circuits we report function at gate voltages < 1 V, respond to sub-nA gate currents, and offer ion current amplification with a gain up to ~300. Ionic amplifiers are a logical step toward improving chemical and biochemical sensing, separations and amplification, among others.more » « less
-
The electrochemical gradients established across cell membranes are paramount for the execution of biological functions. Besides ion channels, other transporters, such as exogenous pore-forming toxins, may present ionic selectivity upon reconstitution in natural and artificial lipid membranes and contribute to the electrochemical gradients. In this context, we utilized electrophysiology approaches to assess the ionic selectivity of the pore-forming toxin lysenin reconstituted in planar bilayer lipid membranes. The membrane voltages were determined from the reversal potentials recorded upon channel exposure to asymmetrical ionic conditions, and the permeability ratios were calculated from the fit with the Goldman–Hodgkin–Katz equation. Our work shows that lysenin channels are ion-selective and the determined permeability coefficients are cation and anion-species dependent. We also exploited the unique property of lysenin channels to transition to a stable sub-conducting state upon exposure to calcium ions and assessed their subsequent change in ionic selectivity. The observed loss of selectivity was implemented in an electrical model describing the dependency of reversal potentials on calcium concentration. In conclusion, our work demonstrates that this pore-forming toxin presents ionic selectivity but this is adjusted by the particular conduction state of the channels.more » « less
An official website of the United States government
