skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2200524

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Much effort in the field of nanopore research has been directed toward reproducing the efficient transport phenomena of biological ion channels. For synthetic nanopores to replicate channel function on the scale of a cellular membrane, it is necessary to consider the modes of crosstalk between channels as well as to develop approaches to prepare nanopore arrays consisting of pores with different transport properties, akin to a membrane in an axon. In this manuscript, first ion concentration polarization (ICP) is identified as the primary means of the crosstalk, and subsequently, the extent and degree of ICP is tuned via targeted chemical modification of the pore walls’ functional groups. Next, two fabrication methods of a model two‐nanopore array are presented in a silicon nitride membrane in which one nanopore contains a bipolar ionic junction and functions as an ionic diode, while the other one is a homogeneously charged ionic resistor. The targeted chemical modification of a thin gold layer at the opening of one pore in an array that leaves the other pore located a few tens of nm away, unmodified, is utilized. These results provide an important framework for designing abiotic ionic circuits that can mimic physiological multichannel ion transport and communication. 
    more » « less
  2. Abstract Biological processes require concerted function of many channels embedded in the cell membrane. While single solid‐state nanopores are already designed to mimic properties of individual biological channels, it is not yet known how to connect the pores to achieve biomimetic ionic circuits with interacting components. To identify fundamental processes that control interactions between nanopores embedded in the same membrane, a model system of minimal arrays consisting of two and three nanopores in silicon nitride films is designed. The constituent nanopores have an opening diameter <10 nm, and the interpore spacing is tuned between 15 and 200 nm. The experimental and modeling results reveal that nanopores in an array interact with each other via overlapping depletion zones created by the process of concentration polarization. The interactions can be further controlled by salt concentration and voltage. These results showcase a possibility of tuning interactions between nanopores and transport properties of arrays by chemical modification of the pore walls. Arrays consisting of nanoporous ionic diodes feature depletion zones with higher concentrations, and lower current suppression than homogeneously charged pores. These experiments and modeling provide the first steps to leave the constraints of single nanopores and to design biomimetic ionic circuits. 
    more » « less
  3. Free, publicly-accessible full text available February 28, 2026
  4. The conductance and selectivity of low-aspect-ratio nanopores are almost independent of the length due to polarization effects controlled by the geometric and electrochemical properties of the whole (pore + reservoir) system. 
    more » « less
  5. Nanopores in thin membranes play important roles in science and industry. Single nanopores have provided a step-change in portable DNA sequencing and understanding nanoscale transport while multipore membranes facilitate food processing and purification of water and medicine. Despite the unifying use of nanopores, the fields of single nanopores and multipore membranes differ – to varying degrees – in terms of materials, fabrication, analysis, and applications. Such a partial disconnect hinders scientific progress as important challenges are best resolved together. This Viewpoint suggests how synergistic crosstalk between the two fields can provide considerable mutual benefits in fundamental understanding and the development of advanced membranes. We first describe the main differences including the atomistic definition of single pores compared to the less defined conduits in multipore membranes. We then outline steps to improve communication between the two fields such as harmonizing measurements and modelling of transport and selectivity. The resulting insight is expected to improve the rational design of porous membranes. The Viewpoint concludes with an outlook of other developments that can be best achieved by collaboration across the two fields to advance the understanding of transport in nanopores and create next-generation porous membranes tailored for sensing, filtration, and other applications. 
    more » « less