skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Collective buoyancy-driven dynamics in swarming enzymatic nanomotors
Enzymatic nanomotors harvest kinetic energy through the catalysis of chemical fuels. When a drop containing nanomotors is placed in a fuel-rich environment, they assemble into ordered groups and exhibit intriguing collective behaviour akin to the bioconvection of aerobic microorganismal suspensions. This collective behaviour presents numerous advantages compared to individual nanomotors, including expanded coverage and prolonged propulsion duration. However, the physical mechanisms underlying the collective motion have yet to be fully elucidated. Our study investigates the formation of enzymatic swarms using experimental analysis and computational modelling. We show that the directional movement of enzymatic nanomotor swarms is due to their solutal buoyancy. We investigate various factors that impact the movement of nanomotor swarms, such as particle concentration, fuel concentration, fuel viscosity, and vertical confinement. We examine the effects of these factors on swarm self-organization to gain a deeper understanding. In addition, the urease catalysis reaction produces ammonia and carbon dioxide, accelerating the directional movement of active swarms in urea compared with passive ones in the same conditions. The numerical analysis agrees with the experimental findings. Our findings are crucial for the potential biomedical applications of enzymatic nanomotor swarms, ranging from enhanced diffusion in bio-fluids and targeted delivery to cancer therapy.  more » « less
Award ID(s):
2140010
PAR ID:
10640438
Author(s) / Creator(s):
; ; ; ; ;
Corporate Creator(s):
Editor(s):
NA
Publisher / Repository:
Springer
Date Published:
Journal Name:
Nature Communications
Volume:
15
Issue:
1
ISSN:
2041-1723
Subject(s) / Keyword(s):
swarming, collective motion, enzyme self-organization
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Honeybee swarms are a landmark example of collective behavior. To become a coherent swarm, bees locate their queen by tracking her pheromones. But how can distant individuals exploit these chemical signals, which decay rapidly in space and time? Here, we combine a behavioral assay with the machine vision detection of organism location and scenting (pheromone propagation via wing fanning) behavior to track the search and aggregation dynamics of the honeybee Apis mellifera L. We find that bees collectively create a scenting-mediated communication network by arranging in a specific spatial distribution where there is a characteristic distance between individuals and directional signaling away from the queen. To better understand such a flow-mediated directional communication strategy, we developed an agent-based model where bee agents obeying simple, local behavioral rules exist in a flow environment in which the chemical signals diffuse and decay. Our model serves as a guide to exploring how physical parameters affect the collective scenting behavior and shows that increased directional bias in scenting leads to a more efficient aggregation process that avoids local equilibrium configurations of isotropic (nondirectional and axisymmetric) communication, such as small bee clusters that persist throughout the simulation. Our results highlight an example of extended classical stigmergy: Rather than depositing static information in the environment, individual bees locally sense and globally manipulate the physical fields of chemical concentration and airflow. 
    more » « less
  2. Collective motion, which is ubiquitous in nature, has traditionally been explained by “self-propelled particle” models from theoretical physics. Here we show, through field, lab, and virtual reality experimentation, that classical models of collective behavior cannot account for how collective motion emerges in marching desert locusts, whose swarms affect the livelihood of millions. In contrast to assumptions made by these models, locusts do not explicitly align with neighbors. While individuals respond to moving-dot stimuli through the optomotor response, this innate behavior does not mediate social response to neighbors. Instead, locust marching behavior, across scales, can be explained by a minimal cognitive framework, which incorporates individuals’ neural representation of bearings to neighbors and internal consensus dynamics for making directional choices. Our findings challenge long-held beliefs about how order can emerge from disorder in animal collectives. 
    more » « less
  3. null (Ed.)
    It is commonly believed that global patterns of motion in flocks, schools and crowds emerge from local interactions between individuals, through a process of self-organization. The key to explaining such collective behaviour thus lies in deciphering these local interactions. We take an experiment-driven approach to modelling collective motion in human crowds. Previously, we observed that a pedestrian aligns their velocity vector (speed and heading direction) with that of a neighbour. Here we investigate the neighbourhood of interaction in a crowd: which neighbours influence a pedestrian's behaviour, how this depends on neighbour position, and how the influences of multiple neighbours are combined. In three experiments, a participant walked in a virtual crowd whose speed and heading were manipulated. We find that neighbour influence is linearly combined and decreases with distance, but not with lateral position (eccentricity). We model the neighbourhood as (i) a circularly symmetric region with (ii) a weighted average of neighbours, (iii) a uni-directional influence, and (iv) weights that decay exponentially to zero by 5 m. The model reproduces the experimental data and predicts individual trajectories in observational data on a human ‘swarm’. The results yield the first bottom-up model of collective crowd motion. 
    more » « less
  4. Abstract Background Global increases in human activity threaten connectivity of animal habitat and populations. Protection and restoration of wildlife habitat and movement corridors require robust models to forecast the effects of human activity on movement behaviour, resource selection, and connectivity. Recent research suggests that animal resource selection and responses to human activity depend on their behavioural movement state, with increased tolerance for human activity in fast states of movement. Yet, few studies have incorporated state-dependent movement behaviour into analyses of Merriam connectivity, that is individual-based metrics of connectivity that incorporate landscape structure and movement behaviour. Methods We assessed the cumulative effects of anthropogenic development on multiple movement processes including movement behaviour, resource selection, and Merriam connectivity. We simulated movement paths using hidden Markov movement models and step selection functions to estimate habitat use and connectivity for three landscape scenarios: reference conditions with no anthropogenic development, current conditions, and future conditions with a simulated expansion of towns and recreational trails. Our analysis used 20 years of grizzly bear ( Ursus arctos ) and gray wolf ( Canis lupus ) movement data collected in and around Banff National Park, Canada. Results Carnivores increased their speed of travel near towns and areas of high trail and road density, presumably to avoid encounters with people. They exhibited stronger avoidance of anthropogenic development when foraging and resting compared to travelling and during the day compared to night. Wolves exhibited stronger avoidance of anthropogenic development than grizzly bears. Current development reduced the amount of high-quality habitat between two mountain towns by more than 35%. Habitat degradation constrained movement routes around towns and was most pronounced for foraging and resting behaviour. Current anthropogenic development reduced connectivity from reference conditions an average of 85%. Habitat quality and connectivity further declined under a future development scenario. Conclusions Our results highlight the cumulative effects of anthropogenic development on carnivore movement behaviour, habitat use, and connectivity. Our strong behaviour-specific responses to human activity suggest that conservation initiatives should consider how proposed developments and restoration actions would affect where animals travel and how they use the landscape. 
    more » « less
  5. Abstract Drones have become invaluable tools for studying animal behaviour in the wild, enabling researchers to collect aerial video data of group‐living animals. However, manually piloting drones to track animal groups consistently is challenging due to complex factors such as terrain, vegetation, group spread and movement patterns. The variability in manual piloting can result in unusable data for downstream behavioural analysis, making it difficult to collect standardized datasets for studying collective animal behaviour.To address these challenges, we present WildWing, a complete hardware and software open‐source unmanned aerial system (UAS) for autonomously collecting behavioural video data of group‐living animals. The system's main goal is to automate and standardize the collection of high‐quality aerial footage suitable for computer vision‐based behaviour analysis. We provide a novel navigation policy to autonomously track animal groups while maintaining optimal camera angles and distances for behavioural analysis, reducing the inconsistencies inherent in manual piloting.The complete WildWing system costs only $650 and incorporates drone hardware with custom software that integrates ecological knowledge into autonomous navigation decisions. The system produces 4 K resolution video at 30 fps while automatically maintaining appropriate distances and angles for behaviour analysis. We validate the system through field deployments tracking groups of Grevy's zebras, giraffes and Przewalski's horses at The Wilds conservation centre, demonstrating its ability to collect usable behavioural data consistently.By automating the data collection process, WildWing helps ensure consistent, high‐quality video data suitable for computer vision analysis of animal behaviour. This standardization is crucial for developing robust automated behaviour recognition systems to help researchers study and monitor wildlife populations at scale. The open‐source nature of WildWing makes autonomous behavioural data collection more accessible to researchers, enabling wider application of drone‐based behavioural monitoring in conservation and ecological research. 
    more » « less