Abstract Currently, more than half of the world’s human population lives in urban areas, which are increasingly affected by climate hazards. Little is known about how multi-hazard environments affect people, especially those living in urban areas in northern latitudes. This study surveyed homeowners in Anchorage and Fairbanks, USA, Alaska’s largest urban centers, to measure individual risk perceptions, mitigation response, and damages related to wildfire, surface ice hazards, and permafrost thaw. Up to one third of residents reported being affected by all three hazards, with surface ice hazards being the most widely distributed, related to an estimated $25 million in annual damages. Behavioral risk response, policy recommendations for rapidly changing urban environments, and the challenges to local governments in mitigation efforts are discussed.
more »
« less
Spatial Optimism and Cross-Over Effects in the Perceptions of Interconnected Wildfire, Flood, and Mudslide Hazards
Communities near the wildland urban interface (WUI) are exposed to a mix of three interconnected hazards (wildfire, flood, and mudslide), and understanding multi-hazard perceptions is critically important for emergency preparation and hazard mitigation—particularly given the WUI’s rapid expansion and intensifying environmental hazards. Based on a survey of residents living near recent burn scars in Southern California, we document cross-over effects in hazard perceptions, where resident experience with one hazard was associated with greater hazard rankings for other hazards. Additionally, for all three hazards analyzed we document perceptions of increasing hazard levels with increasing spatial scales (home, near-home, neighborhood, and community), providing evidence of spatial optimism, or the tendency to discount proximate hazards. This study stresses the importance of using a multi-hazard and multi-scale approach for understanding and responding to local level environmental hazards.
more »
« less
- Award ID(s):
- 2031535
- PAR ID:
- 10640453
- Publisher / Repository:
- Sage Publishing
- Date Published:
- Journal Name:
- Environment and Behavior
- Volume:
- 56
- Issue:
- 1-2
- ISSN:
- 0013-9165
- Page Range / eLocation ID:
- 19 to 58
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Although coasts are frequently seen as at the frontline of near-future environmental risk, there is more to the understanding of the future of coastal environments than a simple interaction between increasing hazards (particularly related to global sea level rise) and increasing exposure and vulnerability of coastal populations. The environment is both multi-hazard and regionally differentiated, and coastal populations, in what should be seen as a coupled social–ecological–physical system, are both affected by, and themselves modify, the impact of coastal dynamics. As the coupled dance between human decisions and coastal environmental change unfolds over the coming decades, transdisciplinary approaches will be required to come to better decisions on identifying and following sustainable coastal management pathways, including the promotion of innovative restoration activities. Inputs from indigenous knowledge systems and local communities will be particularly important as these stakeholders are crucial actors in the implementation of ecosystem-based mitigation and adaptation strategies.more » « less
-
Abstract. Megacities are predominantlyconcentrated along coastlines, making them exposed to a diverse mix ofnatural hazards. The assessment of climatic hazard risk to cities rarely hascaptured the multiple interactions that occur in complex urban systems. Wepresent an improved method for urban multi-hazard risk assessment. We thenanalyze the risk of New York City as a case study to apply enhanced methodsfor multi-hazard risk assessment given the history of exposure to multipletypes of natural hazards which overlap spatially and, in some cases,temporally in this coastal megacity. Our aim is to identify hotspots ofmulti-hazard risk to support the prioritization of adaptation strategies thatcan address multiple sources of risk to urban residents. We usedsocioeconomic indicators to assess vulnerabilities and risks to threeclimate-related hazards (i.e., heat waves, inland flooding and coastal flooding) at high spatial resolution.The analysis incorporates local experts' opinions to identify sources ofmulti-hazard risk and to weight indicators used in the multi-hazard riskassessment. Results demonstrate the application of multi-hazard riskassessment to a coastal megacity and show that spatial hotspots ofmulti-hazard risk affect similar local residential communities along thecoastlines. Analyses suggest that New York City should prioritize adaptationin coastal zones and consider possible synergies and/or trade-offs tomaximize impacts of adaptation and resilience interventions in the spatiallyoverlapping areas at risk of impacts from multiple hazards.more » « less
-
Little is known about how multi-hazard environments affect people, especially those living in urban areas in northern latitudes. This study surveyed homeowners in both Anchorage and Fairbanks, USA, Alaska’s two larger urban centers, to measure individual risk perceptions, mitigation response, and damages related to wildfire, ice hazards, and permafrost thaw. A geospatial hazard assessment informed the survey’s stratified sampling design. The survey had 751 respondents.more » « less
-
While there is high certainty that chronic coastal hazards like floodingand erosion, are increasing due to climate change induced sea-levelrise, there is high uncertainty surrounding the timing, intensity, andlocation of future hazard impacts. Assessments that quantify theseaspects of future hazards are critical for adaptation planning under achanging climate and can reveal new insights into the drivers of coastalhazards. In particular, probabilistic simulations of future hazardimpacts can improve these assessments by explicitly quantifyinguncertainty and by better simulating dependence structures between thecomplex multivariate drivers of hazards. In this study, a regional-scaleprobabilistic assessment of climate change induced coastal hazards isconducted for the Cascadia region, USA during the 21st century. Threeco-produced hazard proxies for beach safety, erosion, and flooding arequantified to identify areas of high hazard impacts and determine hazarduncertainty under three sea-level rise scenarios. A novel chroniccoastal hazard hotspot indicator is introduced that identifies areasthat may experience significant increases in hazard impacts compared topresent day conditions. We find that Southern Cascadia and NorthernWashington have larger hazard impacts and hazard uncertainty due totheir morphologic setting. Erosional hazards, relative to beach safetyand coastal flooding, will increase the most in Cascadia during the 21stcentury under all sea-level rise scenarios. Finally, we find that hazarduncertainty associated with wave and water level variability exceeds theuncertainty associated with sea-level-rise until the end of the century.more » « less
An official website of the United States government

