skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Coastal futures: New framings, many questions, some ways forward
Abstract Although coasts are frequently seen as at the frontline of near-future environmental risk, there is more to the understanding of the future of coastal environments than a simple interaction between increasing hazards (particularly related to global sea level rise) and increasing exposure and vulnerability of coastal populations. The environment is both multi-hazard and regionally differentiated, and coastal populations, in what should be seen as a coupled social–ecological–physical system, are both affected by, and themselves modify, the impact of coastal dynamics. As the coupled dance between human decisions and coastal environmental change unfolds over the coming decades, transdisciplinary approaches will be required to come to better decisions on identifying and following sustainable coastal management pathways, including the promotion of innovative restoration activities. Inputs from indigenous knowledge systems and local communities will be particularly important as these stakeholders are crucial actors in the implementation of ecosystem-based mitigation and adaptation strategies.  more » « less
Award ID(s):
1715638
PAR ID:
10468439
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Coastal Futures
Date Published:
Journal Name:
Cambridge Prisms: Coastal Futures
Volume:
1
ISSN:
2754-7205
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Preserving biodiversity under rapidly changing climate conditions is challenging. One approach for estimating impacts and their magnitude is to model current relationships between genomic and environmental data and then to forecast those relationships under future climate scenarios. In this way, understanding future genomic and environmental relationships can help guide management decisions, such as where to establish new protected areas where populations might be buffered from high temperatures or major changes in rainfall. However, climate warming is only one of many anthropogenic threats one must consider in rapidly developing parts of the world. In Central Africa, deforestation, mining, and infrastructure development are accelerating population declines of rainforest species. Here we investigate multiple anthropogenic threats in a Central African rainforest songbird, the little greenbul (Andropadus virens). We examine current climate and genomic variation in order to explore the association between genome and environment under future climate conditions. Specifically, we estimateGenomic Vulnerability, defined as the mismatch between current and predicted future genomic variation based on genotype–environment relationships modeled across contemporary populations. We do so while considering other anthropogenic impacts. We find that coastal and central Cameroon populations will require the greatest shifts in adaptive genomic variation, because both climate and land use in these areas are predicted to change dramatically. In contrast, in the more northern forest–savanna ecotones, genomic shifts required to keep pace with climate will be more moderate, and other anthropogenic impacts are expected to be comparatively low in magnitude. While an analysis of diverse taxa will be necessary for making comprehensive conservation decisions, the species‐specific results presented illustrate how evolutionary genomics and other anthropogenic threats may be mapped and used to inform mitigation efforts. To this end, we present an integrated conceptual model demonstrating how the approach for a single species can be expanded to many taxonomically diverse species. 
    more » « less
  2. Coastal populations are facing increasing environmental stress from coastal hazards including sea level rise, increasing tidal ranges, and storm surges from hurricanes. The East and Gulf Coasts of the United States (U.S.) are projected to face high rates of sea level rise and include many of the U.S.’s largest urban populations. This study proposes modelling land-use change and coastal change between 1996-2019 to project the impacts of intensifying coastal hazards on the U.S. Gulf and East Coast populations and to estimate how coastal populations are growing or retreating from high-risk areas. The primary objective is to develop a multifaceted spatial-temporal (MuST) framework to model coastal change through land-use projections and thorough analysis of the indicators of coastal urban growth or retreat. While urban growth models exist, one that presents an interdisciplinary evaluation of potential growth and retreat due to geographic factors and coastal hazards has not been released. This study proposes modelling urban growth using geospatial metrics including topographic slope, topographic elevation, distance to existing urban areas, distance to existing roads, and distance to the coast. The model will also use historic hurricane data, including storm track and footprint for named storms between 1996-2019 and the associated flood claims data from Federal Emergency Management Agency (FEMA), to account for existing impacts from coastal storms. Additionally, climate change data including sea level rise projections and future tidal ranges will be incorporated to project the impacts of future coastal hazards on urban expansion over the next 30 years (2020-2050). The basis of the urban growth model compares land-use change between 1996-2019 to complete a geospatial analysis of both the areas shifting from rural (agricultural, forest, wetlands) to urban, indicating growth and population data from 2000-2020, to evaluate coastal retreat or abandonment over the next 30 years. 
    more » « less
  3. ABSTRACT Human-induced hybridization among genetically distinct groups of fish is a widespread and complex problem in fisheries management. A particularly challenging facet of human-induced hybridization is deciding which fish should be prioritized for conservation action or investment, and which should not. The increasing availability of genomic data in fisheries management demands that explicit hybridization frameworks and associated hybridization thresholds be developed, as increasing resolution will inevitably demonstrate that small amounts of nonnative ancestry are present in populations or species that were previously thought to be nonhybridized. A key question then becomes, how do we make rational decisions regarding resource prioritization for populations or species with, for example, 10, 1, 0.1 or even 0.01% nonnative ancestry? We use extensive data from Westslope Cutthroat Trout Onchorhynchus lewisi to describe how objective, data-based decision frameworks can be developed to help managers conserve genetic variation, while minimizing nonnative ancestry and the risk of outbreeding depression. While the conservation implications of hybridization are nuanced and context-dependent, the approach described herein is general and can be extended to other species. 
    more » « less
  4. ABSTRACT Climate means and variability are shifting rapidly, leading to mismatches between climate and locally adapted plant traits. Phenotypic plasticity, the ability of a plant to respond to environmental conditions within a lifetime, may provide a buffer for plants to persist under increasing temperature and water stress. We used two reciprocal common gardens across a steep temperature gradient to investigate plasticity in six populations of Fremont cottonwood, an important foundation tree species in arid riparian ecosystems. We investigated two components of leaf hydraulic architecture: Leaf venation and stomatal morphology, both of which regulate leaf water potential and photosynthesis. These traits will likely affect plant performance under climate stressors, but it is unclear whether they are controlled by genetic or environmental factors and whether they respond to the environment in parallel or independent directions. We found that: (1) Populations had divergent responses to a hotter growing environment, increasing or decreasing vein density. (2) Populations showed surprisingly independent responses of venation vs. stomatal traits. (3) As a result of these different responses, plasticity in hydraulic architecture traits was not predictable from historic climate conditions at population source locations and often varied substantially within populations. (4) Hydraulic architecture was clearly linked to growth, with higher vein and stomatal density predicting greater tree growth in the hottest growing environment. However, higher plasticity in these traits did not increase average growth across multiple environments. Thus,P. fremontiipopulations and genotypes vary in their capacity to adjust their leaf hydraulic architecture and support growth in contrasting environments, but this plasticity is not clearly predictable or beneficial. Identifying genotypes suitable for future conditions will depend on the relative importance of multiple traits and on both evolutionary and ecological responses to changing temperature and water availability. 
    more » « less
  5. Abstract A changing climate and growing coastal populations exacerbate the outcomes of environmental hazards. Large‐scale flooding and acute disasters have been extensively studied through historic and current data. Chronic coastal flooding is less well understood and poses a substantial threat to future coastal populations. This paper presents a novel technique to record chronic coastal flooding using inexpensive accelerometers. This technique was tested in Key West, FL, USA using storm drains to deploy HOBO pendant G data loggers. The accuracy and feasibility of the method was tested through four deployments performed by a team of local stakeholders and researchers between July 2019–November 2021 resulting in 22 sensors successfully recording data, with 15 of these sensors recording flooding. Sensors captured an average of 13.58 inundation events, an average of 12.07% of the deployment time. Measured flooding events coincided with local National Oceanic and Atmospheric Administration (NOAA) water level measurements of high tides. Multiple efforts to predict coastal flooding were compared. Sensors recorded flooding even when NOAA water levels did not exceed the elevation or flooding thresholds set by the National Weather Service (NWS), indicating that NOAA water levels alone were not sufficient in predicting flooding. Access to an effective and inexpensive sensor, such as the one tested here, for measuring flood events can increase opportunities to measure chronic flood hazards and assess local vulnerabilities with stakeholder participation. The ease of use and successful recording of loggers can give communities an increased capacity to make data‐informed decisions surrounding sea level rise adaptation. 
    more » « less