skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 9, 2026

Title: Left digit bias in children’s and adults’ paper-and-pencil number line estimation
Number line estimation tasks are frequently used to learn about numerical thinking, learning, and development. These tasks are often interpreted as though estimates are determined by overall magnitudes of target numerals, rather than specific instantiating digits. Yet estimates are strongly biased by leftmost digits. For example, numbers like “698” are placed too far to the left of numbers like “701” on a 0–1,000 line. This “left digit effect” or “left digit bias” has been investigated little in children, and only on electronic tasks. Here, we ask whether left digit bias appears in paper-and-pencil estimates, and whether it differs for paper-based versus computer-based tasks. In Study 1, 5- to 8-year-old children completed a 0–100 number line task on paper. In Study 2, 7- to 11-year-olds completed a 0–1,000 paper task. In Study 3, adults completed tasks on paper in both ranges. Large left digit effects were observed for children aged 8 years or older and adults, but we did not find evidence for left digit bias in younger children. Study 4 compared paper and computer tasks for adults and children aged 9–12 years. Strong left digit bias was observed in all conditions, with a larger effect for the paper-based task in children. Large left digit effects in number line estimation emerge regardless of task format, with a developmental trajectory broadly consistent with other studies. For children in the age range that reliably exhibits left digit bias (but not adults), paper-and-pencil number line estimation tasks elicit even greater bias than computer-based tasks.  more » « less
Award ID(s):
1920445
PAR ID:
10640469
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Springer (Psychonomic Society)
Date Published:
Journal Name:
Memory & Cognition
ISSN:
0090-502X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent work reveals a left digit effect in number line estimation such that adults' and children's estimates for three-digit numbers with different hundreds-place digits but nearly identical magnitudes are systematically different (e.g., 398 is placed too far to the left of 401 on a 0-1000 line, despite their almost indistinguishable magnitudes; Lai et al., 2018, https://doi.org/10.1111/desc.12657). In two preregistered studies (N = 218), we investigate the scope and malleability of the left digit effect. Experiment 1 used a typical forward-oriented 0-1000 number line estimation task and an atypical reverse-oriented 1000-0 number line estimation task. Experiment 2 used the same forward-oriented typical 0-1000 number line estimation task from Experiment 1, but with trial-by-trial corrective feedback. We observed a large left digit effect, regardless of the orientation of the line in Experiment 1 or the presence of corrective feedback in Experiment 2. Further, analyses using combined data showed that the pattern was present across most stimuli and participants. These findings demonstrate a left digit effect that is robust and widely observed, and that cannot be easily corrected with simple feedback. We discuss the implications of the findings for understanding sources of the effect and efforts to reduce it. 
    more » « less
  2. A robust left digit effect arises in number line estimation, whereby the leftmost digits of numerals have an undue influence on placements such that, for example, numbers like 298 are placed far to the left of numbers like 302. Past efforts to motivate more accurate performance using trial-by-trial and summary feedback have not led to a reduction in the left digit effect. In two experiments, we asked whether it is possible to reduce or eliminate the left digit effect in number line estimation through an instructional intervention in which one is explicitly taught about the left digit effect. In Experiment 1 ( N = 134), participants completed two blocks (60 trials per block) of a self-paced 0–1,000 number line estimation task and were randomly assigned to either an instruction or a control condition. In Experiment 2 ( N = 143), the procedure was enhanced with a learning check, and with additional measures to assess changes in behaviour as a result of instruction. In both experiments, a left digit effect was found in each block of each condition. Although there was evidence that instruction changed behaviour, these changes did not result in any reduction in the left digit effect relative to the control condition. These findings demonstrate that the left digit effect cannot be easily reduced by making people aware of it. 
    more » « less
  3. Abstract A left digit effect has been broadly observed across judgment and decision‐making contexts ranging from product evaluation to medical treatment decisions to number line estimation. For example, $3.00 is judged to be a much greater cost than $2.99, and “801” is estimated strikingly too far to the right of “798” on a number line. Although the consequences of the effects for judgment and decision behavior have been documented, the sources of the effects are not well established. The goal of the current work is to extend investigations of the left digit effect to a new complex judgment activity and to assess whether the magnitude of the effect at the individual level can be predicted from performance on a simpler number skills task on which the left digit effect has also recently been observed. In three experiments (N = 434), adults completed a judgment task in which they rated the strength of hypothetical applicants for college admission and a self‐paced number line estimation task. In all experiments, a small or medium left digit effect was found in the college admissions task, and a large effect was found in number line estimation. Individual‐level variation was observed, but there was no relationship between the magnitudes of the effects in the two tasks. These findings provide evidence of a left digit effect in a novel multiattribute judgment task but offer no evidence that such performance can be predicted from a simple number skills task such as number line estimation. 
    more » « less
  4. Abstract Early mathematical development is thought to depend on visuospatial processing, yet neural evidence for this relationship in young children has been limited. We examined the neural mechanisms supporting numerical and visuospatial processing in 4- to 8-year-old children and adults using functional magnetic resonance imaging (fMRI), with three tasks: numerical matching, geometric shape matching, and number line estimation. We found that specialization for numerical and geometric processing in parietal cortex exists by 4–8 years of age, and that children exhibited greater conjunctive activation between numerical and geometric tasks throughout the parietal cortex compared to adults. During the number line task, children’s neural activity significantly overlapped with activity from both number and geometric shape matching tasks, whereas adults’ activity only overlapped with the number task. These findings provide the first neural evidence that number line estimation relies on both numerical and geometric processing in children, whereas it depends primarily on number-specific processing in adults. 
    more » « less
  5. null (Ed.)
    Abstract Debate continues on whether encoding of symbolic number is grounded in nonsymbolic numerical magnitudes. Nevertheless, fluency of perceiving both number formats, and translating between them, predicts math skills across the life span. Therefore, this study asked if numbers share cortical activation patterns across formats and tasks, and whether neural response to number predicts math-related behaviors. We analyzed patterns of neural activation using 7 Tesla functional magnetic resonance imaging in a sample of 39 healthy adults. Discrimination was successful between numerosities 2, 4, 6, and 8 dots and generalized to activation patterns of the same numerosities represented as Arabic digits in the bilateral parietal lobes and left inferior frontal gyrus (IFG) (and vice versa). This indicates that numerosity-specific neural resources are shared between formats. Generalization was also successful across tasks where participants either identified or compared numerosities in bilateral parietal lobes and IFG. Individual differences in decoding did not relate to performance on a number comparison task completed outside of the scanner, but generalization between formats and across tasks negatively related to math achievement in the parietal lobes. Together, these findings suggest that individual differences in representational specificity within format and task contexts relate to mathematical expertise. 
    more » « less