Simulation of flow and transport in petroleum reservoirs involves solving coupled systems of advection-diffusion-reaction equations with nonlinear flux functions, diffusion coefficients, and reactions/wells. It is important to develop numerical schemes that can approximate all three processes at once, and to high order, so that the physics can be well resolved. In this paper, we propose an approach based on high order, finite volume, implicit, Weighted Essentially NonOscillatory (iWENO) schemes. The resulting schemes are locally mass conservative and, being implicit, suited to systems of advection-diffusion-reaction equations. Moreover, our approach gives unconditionally L-stable schemes for smooth solutions to the linear advection-diffusion-reaction equation in the sense of a von Neumann stability analysis. To illustrate our approach, we develop a third order iWENO scheme for the saturation equation of two-phase flow in porous media in two space dimensions. The keys to high order accuracy are to use WENO reconstruction in space (which handles shocks and steep fronts) combined with a two-stage Radau-IIA Runge-Kutta time integrator. The saturation is approximated by its averages over the mesh elements at the current time level and at two future time levels; therefore, the scheme uses two unknowns per grid block per variable, independent of the spatial dimension. This makes the scheme fairly computationally efficient, both because reconstructions make use of local information that can fit in cache memory, and because the global system has about as small a number of degrees of freedom as possible. The scheme is relatively simple to implement, high order accurate, maintains local mass conservation, applies to general computational meshes, and appears to be robust. Preliminary computational tests show the potential of the scheme to handle advection-diffusion-reaction processes on meshes of quadrilateral gridblocks, and to do so to high order accuracy using relatively long time steps. The new scheme can be viewed as a generalization of standard cell-centered finite volume (or finite difference) methods. It achieves high order in both space and time, and it incorporates WENO slope limiting.
more »
« less
Asymptotic and Invariant-Domain Preserving Schemes for Scalar Conservation Equations with Stiff Source Terms and Multiple Equilibrium Points
We propose an operator-splitting scheme to approximate scalar conservation equations with stiff source terms having multiple (at least two) stable equilibrium points. The scheme com- bines a (reaction-free) transport substep followed by a (transport-free) reaction substep. The transport substep is approximated using the forward Euler method with continuous finite elements and graph viscosity. The reaction substep is approximated using an exponential integrator. The crucial idea of the paper is to use a mesh-dependent cutoff of the reaction time-scale in the reaction substep. We establish a bound on the entropy residual motivating the design of the scheme. We show that the proposed scheme is invariant-domain preserv- ing under the same CFL restriction on the time step as in the nonreactive case. Numerical experiments in one and two space dimensions using linear, convex, and nonconvex fluxes with smooth and nonsmooth initial data in various regimes show that the proposed scheme is asymptotic preserving.
more »
« less
- Award ID(s):
- 2110868
- PAR ID:
- 10640481
- Publisher / Repository:
- Springer, Journal of Scientific Computing (2024) 100:83
- Date Published:
- Journal Name:
- Journal of Scientific Computing
- Volume:
- 100
- Issue:
- 3
- ISSN:
- 0885-7474
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Continuum dislocation dynamics models of mesoscale plasticity consist of dislocation transport-reaction equations coupled with crystal mechanics equations. The coupling between these two sets of equations is such that dislocation transport gives rise to the evolution of plastic distortion (strain), while the evolution of the latter fixes the stress from which the dislocation velocity field is found via a mobility law. Earlier solutions of these equations employed a staggered solution scheme for the two sets of equations in which the plastic distortion was updated via time integration of its rate, as found from Orowan’s law. In this work, we show that such a direct time integration scheme can suffer from accumulation of numerical errors. We introduce an alternative scheme based on field dislocation mechanics that ensures consistency between the plastic distortion and the dislocation content in the crystal. The new scheme is based on calculating the compatible and incompatible parts of the plastic distortion separately, and the incompatible part is calculated from the current dislocation density field. Stress field and dislocation transport calculations were implemented within a finite element based discretization of the governing equations, with the crystal mechanics part solved by a conventional Galerkin method and the dislocation transport equations by the least squares method. A simple test is first performed to show the accuracy of the two schemes for updating the plastic distortion, which shows that the solution method based on field dislocation mechanics is more accurate. This method then was used to simulate an austenitic steel crystal under uniaxial loading and multiple slip conditions. By considering dislocation interactions caused by junctions, a hardening rate similar to discrete dislocation dynamics simulation results was obtained. The simulations show that dislocations exhibit some self-organized structures as the strain is increased.more » « less
-
This paper proposes a novel fault detection and isolation (FDI) scheme for distributed parameter systems modeled by a class of parabolic partial differential equations (PDEs) with nonlinear uncertain dynamics. A key feature of the proposed FDI scheme is its capability of dealing with the effects of system uncertainties for accurate FDI. Specifically, an approximate ordinary differential equation (ODE) system is first derived to capture the dominant dynamics of the original PDE system. An adaptive dynamics identification approach using radial basis function neural network is then proposed based on this ODE system, so as to achieve locally-accurate identification of the uncertain system dynamics under normal and faulty modes. A bank of FDI estimators with associated adaptive thresholds are finally designed for real-time FDI decision making. Rigorous analysis on the FDI performance in terms of fault detectability and isolatability is provided. Simulation study on a representative transport-reaction process is conducted to demonstrate the effectiveness and advantage of the proposed approach.more » « less
-
This paper proposes a novel fault isolation (FI) scheme for distributed parameter systems modeled by a class of parabolic partial differential equations (PDEs) with nonlinear uncertain dynamics. A key feature of the proposed FI scheme is its capability of dealing with the effects of system uncertainties for accurate FI. Specifically, an approximate ordinary differential equation (ODE) system is first derived to capture the dominant dynamics of the original PDE system. An adaptive dynamics identification approach using radial basis function neural network is then proposed based on this ODE system, to achieve locally-accurate identification of the uncertain system dynamics under faulty modes. A bank of FI estimators with associated adaptive thresholds are finally designed for real-time FI decision making. Rigorous analysis on the fault isolatability is provided. Simulation study on a representative transport-reaction process is conducted to demonstrate the effectiveness of the proposed approach.more » « less
-
The Discontinuous Petrov-Galerkin (DPG) method and the exponential integrators are two well establishednumerical methods for solving Partial Differential Equations (PDEs) and stiff systems of Ordinary Differential Equations (ODEs), respectively. In this work, we apply the DPG method in the time variable for linear parabolic problems and we calculate the optimal test functions analytically. We show that the DPG method in time is equivalent to exponential integrators for the trace variables, which are decoupled from the interior variables. In addition, the DPG optimal test functions allow us to compute the approximated solutions in the time element interiors. This DPG method in time allows to construct a posteriori error estimations in order to perform adaptivity. We generalize this novel DPG-based time-marching scheme to general first order linear systems of ODEs. We show the performance of the proposed method for 1D and 2D +time linear parabolic PDEs after discretizing in space by the finite element method.more » « less
An official website of the United States government

