skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Robots that Can Survive the Egg Drop
If you ever did the egg drop challenge, you know it is hard to build something that can protect a fragile egg from crashing into the ground and breaking. Engineers are building soft robots called tensegrity robots, which are designed to survive harsh crashes. The word tensegrity comes from “tension” and “integrity”. It means the robot is made of stiff bars held together with stretchy cables. This flexible structure helps a tensegrity robot absorb the impact from crashes. Someday, these robots might be used to explore dangerous places like deep caves or other planets. These robots could fall off cliffs or into craters. Right now, engineers are making tensegrity robots better and easier to control. In this article, we will explain how tensegrity robots work. We will discuss their advantages, their disadvantages, and what they can be used for.  more » « less
Award ID(s):
1955225
PAR ID:
10640512
Author(s) / Creator(s):
;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers for Young Minds
Volume:
12
ISSN:
2296-6846
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tensegrity robots, composed of rigid rods and flexible cables, exhibit high strength-to-weight ratios and significant deformations, which enable them to navigate unstructured terrains and survive harsh impacts. They are hard to control, however, due to high dimensionality, complex dynamics, and a coupled architecture. Physics-based simulation is a promising avenue for developing locomotion policies that can be transferred to real robots. Nevertheless, modeling tensegrity robots is a complex task due to a substantial sim2real gap. To address this issue, this paper describes a Real2Sim2Real (R2S2R) strategy for tensegrity robots. This strategy is based on a differentiable physics engine that can be trained given limited data from a real robot. These data include offline measurements of physical properties, such as mass and geometry for various robot components, and the observation of a trajectory using a random control policy. With the data from the real robot, the engine can be iteratively refined and used to discover locomotion policies that are directly transferable to the real robot. Beyond the R2S2R pipeline, key contributions of this work include computing non-zero gradients at contact points, a loss function for matching tensegrity locomotion gaits, and a trajectory segmentation technique that avoids conflicts in gradient evaluation during training. Multiple iterations of the R2S2R process are demonstrated and evaluated on a real 3-bar tensegrity robot. 
    more » « less
  2. Tensegrity robots, composed of rigid rods and flexible cables, exhibit high strength-to-weight ratios and significant deformations, which enable them to navigate unstructured terrains and survive harsh impacts. They are hard to control, however, due to high dimensionality, complex dynamics, and a coupled architecture. Physics-based simulation is a promising avenue for developing locomotion policies that can be transferred to real robots. Nevertheless, modeling tensegrity robots is a complex task due to a substantial sim2real gap. To address this issue, this paper describes a Real2Sim2Real (R2S2R) strategy for tensegrity robots. This strategy is based on a differentiable physics engine that can be trained given limited data from a real robot. These data include offline measurements of physical properties, such as mass and geometry for various robot components, and the observation of a trajectory using a random control policy. With the data from the real robot, the engine can be iteratively refined and used to discover locomotion policies that are directly transferable to the real robot. Beyond the R2S2R pipeline, key contributions of this work include computing non-zero gradients at contact points, a loss function for matching tensegrity locomotion gaits, and a trajectory segmentation technique that avoids conflicts in gradient evaluation during training. Multiple iterations of the R2S2R process are demonstrated and evaluated on a real 3-bar tensegrity robot. 
    more » « less
  3. Tensegrity robots are composed of rigid struts and flexible cables. They constitute an emerging class of hybrid rigid-soft robotic systems and are promising systems for a wide array of applications, ranging from locomotion to assembly. They are difficult to control and model accurately, however, due to their compliance and high number of degrees of freedom. To address this issue, prior work has introduced a differentiable physics engine designed for tensegrity robots based on first principles. In contrast, this work proposes the use of graph neural networks to model contact dynamics over a graph representation of tensegrity robots, which leverages their natural graph-like cable connectivity between end caps of rigid rods. This learned simulator can accurately model 3-bar and 6-bar tensegrity robot dynamics in simulation-to-simulation experiments where MuJoCo is used as the ground truth. It can also achieve higher accuracy than the previous differentiable engine for a real 3-bar tensegrity robot, for which the robot state is only partially observable. When compared against direct applications of recent mesh-based graph neural network simulators, the proposed approach is computationally more efficient, both for training and inference, while achieving higher accuracy. Code and data are available at https://github.com/nchen9191/tensegrity_gnn_simulator_public 
    more » « less
  4. Tensegrity robots are composed of rigid struts and flexible cables. They constitute an emerging class of hybrid rigid-soft robotic systems and are promising systems for a wide array of applications, ranging from locomotion to assembly. They are difficult to control and model accurately, however, due to their compliance and high number of degrees of freedom. To address this issue, prior work has introduced a differentiable physics engine designed for tensegrity robots based on first principles. In contrast, this work proposes the use of graph neural networks to model contact dynamics over a graph representation of tensegrity robots, which leverages their natural graph-like cable connectivity between end caps of rigid rods. This learned simulator can accurately model 3-bar and 6-bar tensegrity robot dynamics in simulation-to-simulation experiments where MuJoCo is used as the ground truth. It can also achieve higher accuracy than the previous differentiable engine for a real 3-bar tensegrity robot, for which the robot state is only partially observable. When compared against direct applications of recent mesh-based graph neural network simulators, the proposed approach is computationally more efficient, both for training and inference, while achieving higher accuracy. Code and data are available at https://github.com/nchen9191/tensegrity_gnn_simulator_public 
    more » « less
  5. Tensegrity robots are composed of rigid struts and flexible cables. They constitute an emerging class of hybrid rigid-soft robotic systems and are promising systems for a wide array of applications, ranging from locomotion to assembly. They are difficult to control and model accurately, however, due to their compliance and high number of degrees of freedom. To address this issue, prior work has introduced a differentiable physics engine designed for tensegrity robots based on first principles. In contrast, this work proposes the use of graph neural networks to model contact dynamics over a graph representation of tensegrity robots, which leverages their natural graph-like cable connectivity between end caps of rigid rods. This learned simulator can accurately model 3-bar and 6-bar tensegrity robot dynamics in simulation-to-simulation experiments where MuJoCo is used as the ground truth. It can also achieve higher accuracy than the previous differentiable engine for a real 3-bar tensegrity robot, for which the robot state is only partially observable. When compared against direct applications of recent mesh-based graph neural network simulators, the proposed approach is computationally more efficient, both for training and inference, while achieving higher accuracy. Code and data are available at https://github.com/nchen9191/tensegrity_gnn_simulator_public 
    more » « less