Abstract Peptide‐protein docking is challenging due to the considerable conformational freedom of the peptide. CAPRI rounds 38‐45 included two peptide‐protein interactions, both characterized by a peptide forming an additional beta strand of a beta sheet in the receptor. Using theRosetta FlexPepDockpeptide docking protocol we generated top‐performing, high‐accuracy models for targets 134 and 135, involving an interaction between a peptide derived from L‐MAG with DLC8. In addition, we were able to generate the only medium‐accuracy models for a particularly challenging target, T121. In contrast to the classical peptide‐mediated interaction, in which receptor side chains contact both peptide backbone and side chains, beta‐sheet complementation involves a major contribution to binding by hydrogen bonds between main chain atoms. To establish how binding affinity and specificity are established in this special class of peptide‐protein interactions, we extractedPeptiDBeta, a benchmark of solved structures of different protein domains that are bound by peptides via beta‐sheet complementation, and tested our protocol for global peptide‐dockingPIPER‐FlexPepDockon this dataset. We find that the beta‐strand part of the peptide is sufficient to generate approximate and even high resolution models of many interactions, but inclusion of adjacent motif residues often provides additional information necessary to achieve high resolution model quality.
more »
« less
This content will become publicly available on December 16, 2025
Discovery and Heterologous Expression of Trilenodin, an Antimicrobial Lasso Peptide with a Unique Tri‐Isoleucine Motif
Abstract Lasso peptides are an increasingly relevant class of peptide natural products with diverse biological activities, intriguing physical properties, and unique chemical structures. Most characterized lasso peptides have been from Actinobacteria and Proteobacteria, despite bioinformatic analyses suggesting that other bacterial taxa, particularly those from Firmicutes, are rich in biosynthetic gene clusters (BGCs) encoding lasso peptides. Herein, we report the bioinformatic identification of a lasso peptide BGC fromPaenibacillus taiwanensisDSM18679 which we termedpats. We used a bioinformatics‐guided isolation approach and high‐resolution tandem mass spectrometry (HRMS/MS) to isolate and subsequently characterize a new lasso peptide produced from thepatsBGC, which we named trilenodin, after the tri‐isoleucine motif present in its primary sequence. This tri‐isoleucine motif is unique among currently characterized lasso peptides. We confirmed the connection between thepatsBGC and trilenodin production by establishing the firstBacillus subtilis168‐based heterologous expression system for expressing Firmicutes lasso peptides. We finally determined that trilenodin exhibits potent antimicrobial activity againstB. subtilisandKlebsiella pneumoniae, making trilenodin the first characterized biologically active lasso peptide from Firmicutes. Collectively, we demonstrate that bacteria from Firmicutes can serve as high‐potential sources of chemically and biologically diverse lasso peptides.
more »
« less
- Award ID(s):
- 2216137
- PAR ID:
- 10640558
- Publisher / Repository:
- European Chemistry Societies
- Date Published:
- Journal Name:
- ChemBioChem
- Volume:
- 25
- Issue:
- 24
- ISSN:
- 1439-4227
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Ubiquitin and ubiquitin like proteins (UBLs) play key roles in eukaryotes. These proteins are attached to their target proteins through an E1-E2-E3 cascade and modify the functions of these proteins. Since the discovery of ubiquitin, several UBLs have been identified, including Nedd8, SUMO, ISG15, and Atg8. Ubiquitin and UBLs share a similar three-dimensional structure: β -grasp fold and an X-X-[R/A/E/K]-X-X-[G/X]-G motif at the C-terminus. We have previously reported that ubiquitin, Nedd8, and SUMO mimicking peptides which all contain the conserved motif X-X-[R/A/E/K]-X-X-[G/X]-G still retained their reactivity toward their corresponding E1, E2, and E3 enzymes. In our current study, we investigated whether such C-terminal peptides could still be transferred onto related pathway enzymes to probe the function of these enzymes when they are fused with a protein. By bioinformatic search of protein databases, we selected eight proteins carrying the X-X-[R/A/E/K]-X-X-[G/X]-G motif at the C-terminus of the β -grasp fold. We synthesized the C-terminal sequences of these candidates as short peptides and found that three of them showed significant reactivity with the ubiquitin E1 enzyme Ube1. We next fused the three reactive short peptides to three different protein frames, including their respective native protein frames, a ubiquitin frame and a peptidyl carrier protein (PCP) frame, and measured the reactivities of these peptide-fused proteins with Ube1. Peptide-fused proteins on ubiquitin and PCP frames showed obvious reactivity with Ube1. However, when we measured E2 UbcH7 transfer, we found that the PCP-peptide fusions lost their reactivity with UbcH7. Taken together, these results suggested that the recognition of E2 enzymes with peptide-fused proteins depended not only on the C-terminal sequences of the ubiquitin-mimicking peptides, but also on the overall structures of the protein frames.more » « less
-
Abstract Sessile plants encode a large number of small peptides and cell surface-resident receptor kinases, most of which have unknown functions. Here, we report that theArabidopsisreceptor kinase MALE DISCOVERER 1-INTERACTING RECEPTOR-LIKE KINASE 2 (MIK2) recognizes the conserved signature motif of SERINE-RICH ENDOGENOUS PEPTIDEs (SCOOPs) fromBrassicaceaeplants as well as proteins present in fungalFusariumspp. and bacterialComamonadaceae, and elicits various immune responses. SCOOP signature peptides trigger immune responses and altered root development in a MIK2-dependent manner with a sub-nanomolar sensitivity. SCOOP12 directly binds to the extracellular leucine-rich repeat domain of MIK2 in vivo and in vitro, indicating that MIK2 is the receptor of SCOOP peptides. Perception of SCOOP peptides induces the association of MIK2 and the coreceptors SOMATIC EMBRYOGENESIS RECEPTOR KINASE 3 (SERK3) and SERK4 and relays the signaling through the cytosolic receptor-like kinasesBOTRYTIS-INDUCED KINASE 1 (BIK1) and AVRPPHB SUSCEPTIBLE1 (PBS1)-LIKE 1 (PBL1). Our study identifies a plant receptor that bears a dual role in sensing the conserved peptide motif from phytocytokines and microbial proteins via a convergent signaling relay to ensure a robust immune response.more » « less
-
RationaleThe function of a protein or the binding affinity of an antibody can be substantially altered by the replacement of leucine (Leu) with isoleucine (Ile), and vice versa, so the ability to identify the correct isomer using mass spectrometry can help resolve important biological questions. Tandem mass spectrometry approaches for Leu/Ile (Xle) discrimination have been developed, but they all have certain limitations. MethodsFour model peptides and two wild‐type peptide sequences containing either Leu or Ile residues were subjected to charge transfer dissociation (CTD) mass spectrometry on a modified three‐dimensional ion trap. The peptides were analyzed in both the 1+ and 2+ charge states, and the results were compared to conventional collision‐induced dissociation spectra of the same peptides obtained using the same instrument. ResultsCTD resulted in 100% sequence coverage for each of the studied peptides and provided a variety of side‐chain cleavages, includingd,wandvions. Using CTD, reliabledandwions of Xle residues were observed more than 80% of the time. When present,dions are typically greater than 10% of the abundance of the correspondingaions from which they derive, andwions are typically more abundant than thezions from which they derive. ConclusionsCTD has the benefit of being applicable to both 1+ and 2+ precursor ions, and the overall performance is comparable to that of other high‐energy activation techniques like hot electron capture dissociation and UV photodissociation. CTD does not require chemical modifications of the precursor peptides, nor does it require additional levels of isolation and fragmentation.more » « less
-
Sponges (Porifera) contain many peptide-specialized metabolites with potent biological activities and significant roles in shaping marine ecology. It is well established that symbiotic bacteria produce bioactive “sponge” peptides, both on the ribosome (RiPPs) and nonribosomally. Here, we demonstrate that sponges themselves also produce many bioactive macrocyclic peptides, such as phakellistatins and related proline-rich macrocyclic peptides (PRMPs). Using theStylissa carterisponge transcriptome, methods were developed to find sequences encoding 46 distinct RiPP-type core peptides, of which ten encoded previously identified PRMP sequences. With this basis set, the genome and transcriptome of the spongeAxinella corrugatawas interrogated to find 35 PRMP precursor peptides encoding 31 unique core peptide sequences. At least 11 of these produced cyclic peptides that were present in the sponge and could be characterized by mass spectrometry, including stylissamides A-D and seven previously undescribed compounds. Precursor peptides were encoded in theA. corrugatagenome, confirming their animal origin. The peptides contained signal peptide sequences and highly repetitive recognition sequence-core peptide elements with up to 25 PRMP copies in a single precursor. In comparison to sponges without PRMPs, PRMP sponges are incredibly enriched in potentially secreted polypeptides, with >23,000 individual signal peptide encoding genes found in a single transcriptome. The similarities between PRMP biosynthetic genes and neuropeptides in terms of their biosynthetic logic suggest a fundamental biology linked to circular peptides, possibly indicating a widespread and underappreciated diversity of signaling peptide post-translational modifications across the animal kingdom.more » « less
An official website of the United States government
