Abstract This study investigates the vertical structure and related dynamical and energy conversion processes that aided the development of two east Pacific easterly waves (EWs) during the 2019 OTREC (Organization of Tropical East Pacific Convection) campaign period. The initial mesoscale convective systems (MCSs) that seeded both disturbances formed near the Panama Bight and developed into EWs near the Papagayo jet exit region. In the MCS stage, both disturbances were characterized by top‐heavy vertical motions and midlevel vorticity near the maximum vorticity center. The deep convection caused strong latent heating and eddy available potential energy (EAPE) generation and conversion to eddy kinetic energy (EKE) in the upper levels. When the disturbances moved to the south of the Papagayo jet, they interacted with the low‐level shear vorticity there, enhancing low‐level stretching and vorticity. Subsequently, the top‐heavy upward motion intensified and led to enhanced stretching and vorticity intensification at midlevels. The enhanced stretching on the southwest side also favored the formation of southwest‐northeast tilted vorticity at midlevels that characterizes EWs. After the EWs formed near the jet exit, the vertical motion weakened and became more bottom‐heavy, with the maximum vorticity shifting to lower levels. This change in the vertical motion profile near the jet exit region is likely modulated by the lower sea surface temperature, reduced moisture, and weaker convective instability. While EAPE‐to‐EKE conversion weakened during this period, the low‐level barotropic conversion of EKE in the jet exit served as the primary energy source for the EWs. 
                        more » 
                        « less   
                    
                            
                            Intensified Currents Associated With Benthic Storms Underneath an Eddying Jet
                        
                    
    
            Abstract Benthic storms are episodes of intensified near‐bottom currents capable of sediment resuspension in the deep ocean. They typically occur under regions of high surface eddy kinetic energy (EKE), such as the Gulf Stream. Although they have long been observed, the mechanism(s) responsible for their formation and their relationships with salient features of the deep ocean, such as bottom mixed layers (BMLs) and benthic nepheloid layers (BNLs), remain poorly understood. Here we conduct idealized experiments with a primitive‐equation model to explore the impacts of the unforced instability of a surface‐intensified jet on near‐bottom flows of a deep zonal channel. Vertical resolution is increased near the bottom to represent the bottom boundary layer. We find that the unstable near‐surface jet develops meanders and evolves into alternating, deep‐reaching cyclones and anticyclones. Simultaneously, EKE increases near the bottom due to the convergence of vertical eddy pressure fluxes, leading to near‐bottom currents comparable to those observed during benthic storms. These currents in turn form BMLs with thickness of O(100 m) from enhanced velocity shears and turbulence production near the bottom. The deep cyclonic eddies transport fluid particles both laterally and vertically, from near the bottom through the entire BML and may contribute to the formation of the lower part of BNLs. A sloping bottom reduces both the intensity of the near‐bottom currents and the extent of vertical transport. Overall, our study highlights a significant response of the abyssal environment to near‐surface current instability, with potential implications for sediment transport in the deep ocean. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2122726
- PAR ID:
- 10640595
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Oceans
- Volume:
- 129
- Issue:
- 7
- ISSN:
- 2169-9275
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Energy Cascades and Loss of Balance in a Reentrant Channel Forced by Wind Stress and Buoyancy Fluxesnull (Ed.)Abstract A large fraction of the kinetic energy in the ocean is stored in the “quasigeostrophic” eddy field. This “balanced” eddy field is expected, according to geostrophic turbulence theory, to transfer energy to larger scales. In order for the general circulation to remain approximately steady, instability mechanisms leading to loss of balance (LOB) have been hypothesized to take place so that the eddy kinetic energy (EKE) may be transferred to small scales where it can be dissipated. This study examines the kinetic energy pathways in fully resolved direct numerical simulations of flow in a flat-bottomed reentrant channel, externally forced by surface buoyancy fluxes and wind stress in a configuration that resembles the Antarctic Circumpolar Current. The flow is allowed to reach a statistical steady state at which point it exhibits both a forward and an inverse energy cascade. Flow interactions with irregular bathymetry are excluded so that bottom drag is the sole mechanism available to dissipate the upscale EKE transfer. The authors show that EKE is dissipated preferentially at small scales near the surface via frontal instabilities associated with LOB and a forward energy cascade rather than by bottom drag after an inverse energy cascade. This is true both with and without forcing by the wind. These results suggest that LOB caused by frontal instabilities near the ocean surface could provide an efficient mechanism, independent of boundary effects, by which EKE is dissipated. Ageostrophic anticyclonic instability is the dominant frontal instability mechanism in these simulations. Symmetric instability is also important in a “deep convection” region, where it can be sustained by buoyancy loss.more » « less
- 
            Abstract The vertical structure of ocean eddies is generally surface-intensified, commonly attributed to the dominant baroclinic modes arising from the boundary conditions (BCs). Conventional BC considerations mostly focus on either flat- or rough-bottom conditions. The impact of surface buoyancy anomalies—often represented by surface potential vorticity (PV) anomalies—has not been fully explored. Here, we study the role of the surface PV in setting the vertical distribution of eddy kinetic energy (EKE) in an idealized adiabatic ocean model driven by wind stress. The simulated EKE profile in the extratropical ocean tends to peak at the surface and have ane-folding depth typically smaller than half of the ocean depth. This vertical structure can be reasonably represented by a single surface quasigeostrophic (SQG) mode at the energy-containing scale resulting from the large-scale PV structure. Due to isopycnal outcropping and interior PV homogenization, the surface meridional PV gradient is substantially stronger than the interior PV gradient, yielding surface-trapped baroclinically unstable modes with horizontal scales comparable to or smaller than the deformation radius. These surface-trapped eddies then grow in size both horizontally and vertically through an inverse energy cascade up to the energy-containing scale, which dominates the vertical distribution of EKE. As for smaller horizontal scales, the EKE distribution decays faster with depth. Guided by this interpretation, an SQG-based scale-aware parameterization of the EKE profile is proposed. Preliminary offline diagnosis of a high-resolution simulation shows the proposed scheme successfully reproducing the dependence of the vertical structure of EKE on the horizontal grid resolution.more » « less
- 
            Abstract A simplified quasigeostrophic (QG) analytical model together with an idealized numerical model are used to study the effect of uneven ice–ocean stress on the temporal evolution of the geostrophic current under sea ice. The tendency of the geostrophic velocity in the QG model is given as a function of the lateral gradient of vertical velocity and is further related to the ice–ocean stress with consideration of a surface boundary layer. Combining the analytical and numerical solutions, we demonstrate that the uneven stress between the ice and an initially surface-intensified, laterally sheared geostrophic current can drive an overturning circulation to trigger the displacement of isopycnals and modify the vertical structure of the geostrophic velocity. When the near-surface isopycnals become tilted in the opposite direction to the deeper ones, a subsurface velocity core is generated (via geostrophic setup). This mechanism should help understand the formation of subsurface currents in the edge of Chukchi and Beaufort Seas seen in observations. Furthermore, our solutions reveal a reversed flow extending from the bottom to the middepth, suggesting that the ice-induced overturning circulation potentially influences the currents in the deep layers of the Arctic Ocean, such as the Atlantic Water boundary current.more » « less
- 
            null (Ed.)Abstract The structure and variations of the North Equatorial Counter Current (NECC) in the far western Pacific Ocean during 2014-2016 are investigated using repeated in-situ hydrographic data, altimeter data, Argo data, and reanalysis data. The NECC shifted ~1 degree southward and intensified significantly with its transport exceeding 40 Sv (1 Sv = 10 6 m 3 s -1 ), nearly double its climatology value, during the developing phase of the 2015/16 El Niño event. Observations show that the 2015/16 El Niño exerted a comparable impact on the NECC with that of the extreme 1997/98 El Niño in the far western Pacific Ocean. Baroclinic instability provided the primary energy source for the eddy kinetic energy (EKE) in the 2015/16 El Niño, which differs from the traditional understanding of the energy source of EKE as barotropic instability in low latitude ocean. The enhanced vertical shear and the reduced density jump between the NECC layer and the subsurface North Equatorial Subsurface Current (NESC) layer renders the NECC–NESC system baroclinically unstable in the western Pacific Ocean during El Niño developing phase. The eddy-mean flow interactions here are diverse associated with various states of the El Niño Southern Oscillation (ENSO).more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
