Abstract Coastal deltaic aquifers are vulnerable to degradation from seawater intrusion, geogenic and anthropogenic contamination, and groundwater abstraction. The distribution and transport of contaminants are highly dependent on the subsurface sedimentary architecture, such as the presence of channelized features that preferentially conduct flow. Surface deposition changes in response to sea‐level rise (SLR) and sediment supply, but it remains unclear how these surface changes affect the distribution and transport of groundwater solutes in aquifers. Here, we explore the influence of SLR and sediment supply on aquifer heterogeneity and resulting effects on contaminant transport. We use realizations of subsurface heterogeneity generated by a process‐based numerical model, DeltaRCM, which simulates the evolution of a deltaic aquifer with different input sand fractions and rates of SLR. We simulate groundwater flow and solute transport through these deposits in three contamination scenarios: (a) vertical transport from widespread contamination at the land surface, (b) vertical transport from river water infiltration, and (c) lateral seawater intrusion. The simulations show that the vulnerability of deltaic aquifers to seawater intrusion correlates to sand fraction, while vertical transport of contaminants, such as widespread shallow contamination and river water infiltration, is influenced by channel stacking patterns. This analysis provides new insights into the connection between the depositional system properties and vulnerability to different modes of groundwater contamination. It also illustrates how vulnerability may vary locally within a delta due to depositional differences. Results suggest that groundwater management strategies may be improved by considering surface features, location within the delta, and the external forcings during aquifer deposition.
more »
« less
This content will become publicly available on September 22, 2026
Fluid Stretching at Facies Interfaces Governs Solute Transport
This study provides a kinematic explanation for why facies interfaces dominate solute transport in heterogeneous aquifers. Using flow and transport simulations, we apply kinematic metrics to quantify deformation processes that control plume evolution. Results show that strong conductivity contrasts generate preferential flow corridors, while transitional zones at facies interfaces act as persistent mixing fronts where stretching and folding intensify mixing. These cross-facies transitions emerge as the primary controls on transport observables such as dispersion and dilution, with within-facies variability exerting secondary effects. By linking sedimentary architecture to flow deformation, this work provides the mechanistic justification for earlier findings that cross-transition probabilities govern solute spreading. The results highlight the need to resolve geologic interfaces in both field characterization and remediation design. Flow topology offers a unifying framework for predicting transport in aquifers and points to opportunities for geophysical methods to target the key architectural features that regulate mixing and dilution.
more »
« less
- Award ID(s):
- 2048452
- PAR ID:
- 10640611
- Publisher / Repository:
- ESS Open Archive
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We study the mixing dynamics of solute blobs in the flow through saturated heterogeneous porous media. As the solute plume is advected through a heterogeneous porous medium it suffers a series of deformations that determine its mixing with the ambient fluid through diffusion. Key questions are the relation between the spatial disorder and the mixing dynamics and the effect of the initial solute distribution. To address these questions, we formulate the advection–diffusion problem in a coordinate system that moves and rotates along streamlines of the steady flow field. The impact of the medium heterogeneity is quantified systematically within a stochastic modelling approach. For a simple shear flow, the maximum concentration of a blob decays asymptotically as $$t^{-2}$$ . For heterogeneous porous media, the mixing of the solute blob is determined by the random sampling of flow and deformation heterogeneity along trajectories, a mechanism different from persistent shear. We derive explicit perturbation theory expressions for stretching-enhanced solute mixing that relate the medium structure and mixing behaviour. The solution is valid for moderate heterogeneity. The random sampling of shear along trajectories leads to a $$t^{-3/2}$$ decay of the maximum concentration as opposed to an equivalent homogeneous medium, for which it decays as $$t^{-1}$$ .more » « less
-
Abstract The flow‐induced dissolution of porous rocks governs many important subsurface processes and applications. Solute mixing, which determines pore‐scale concentration fields, is a key process that affects dissolution. Despite its importance, the effects of pore‐scale mixing on large‐scale dissolution patterns have not been investigated. Here, we use a pore network model to elucidate the mixing effects on macroscopic dissolution patterns and solute transport. We consider two mixing rules at pore intersections that represent two end members in terms of the mixing intensity. We observe that the mixing effect on dissolution is the strongest at moderate Damköhler number, when the reactive and advective time scales are comparable. This is the regime where wormholes spontaneously appear. Incomplete mixing is shown to enhance flow focusing at the tips of the dissolution channels, which results in thinner wormholes and shorter breakthrough times. These effects on passive solute transport are evident independent of initial network heterogeneity.more » « less
-
Groundwater-surface water interaction (hyporheic exchange) is critical in numerous hydrogeochemical processes; however, hyporheic exchange is difficult to characterize due to the various spatial (e.g., sedimentary architecture) and temporal (e.g., stage fluctuations) variables that influence it. This interdisciplinary study brings forth novel insights by integrating various methodologies including geophysical surveys, physical and chemical sediment characterization, and water chemistry analysis to explore the interplay of the numerous facets governing hyporheic zone processes within a compound bar deposit. The findings reveal distinct sedimentary facies and geochemical zones within the compound bar, driven by the sedimentary architecture. Cross-bar channel fills are identified as critical structures influencing hydrogeochemical dynamics, acting as baffles to groundwater flow and modulating nutrient transformations. Geophysical imaging and hydrogeochemical analyses highlight the complex interplay between sediment characteristics and subsurface hydraulic connectivity, emphasizing the role of sediment heterogeneity in controlling hyporheic exchange and solute mixing. The study concludes that sediment heterogeneity, particularly the presence of cross-bar channel fills, plays a pivotal role in the hydrogeochemical dynamics of the hyporheic zone. These structures significantly influence hyporheic flow paths, solute residence times, and nutrient cycling, underscoring the necessity to consider the fine-scale sedimentary architecture in models of hyporheic exchange. The findings contribute to a deeper understanding of riverine ecosystem processes, offering insights that can inform management strategies for water quality and ecological integrity.more » « less
-
Abstract This note describes the development and testing of a novel, programmable reversing flow 1D (R1D) experimental column apparatus designed to investigate reaction, sorption, and transport of solutes in aquifers within dynamic reversing flow zones where waters with different chemistries mix. The motivation for constructing this apparatus was to understand the roles of mixing and reaction on arsenic discharging through a tidally fluctuating riverbank. The apparatus can simulate complex transient flux schedules similar to natural flow regimes The apparatus uses an Arduino microcontroller to control flux magnitude through two peristaltic pumps. Solenoid valves control flow direction from two separate reservoirs. In‐line probes continually measure effluent electrical conductance, pH, oxidation–reduction potential, and temperature. To understand how sensitive physical solute transport is to deviations from the real hydrograph of the tidally fluctuating river, two experiments were performed using: (1) a simpler constant magnitude, reversing flux direction schedule (RCF); and (2) a more environmentally relevant variable magnitude, reversing flux direction schedule (RVF). Wherein, flux magnitude was ramped up and down according to a sine wave. Modeled breakthrough curves of chloride yielded nearly identical dispersivities under both flow regimes. For the RVF experiment, Peclet numbers captured the transition between diffusion and dispersion dominated transport in the intertidal interval. Therefore, the apparatus accurately simulated conservative, environmentally relevant mixing under transient, variable flux flow regimes. Accurately generating variable flux reversing flow regimes is important to simulate the interaction between flow velocity and chemical reactions where Brownian diffusion of solutes to solid‐phase reaction sites is kinetically limited.more » « less
An official website of the United States government
