skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 2, 2026

Title: Electrochemical Reduction of Ammonia Captured CO2 to CO over Nickel Single-Atom Catalyst
Carbon reactive capture and conversion offers a sustainable route to valuable chemicals and fuels while aiding GHG reduction. Direct electrochemical conversion of capture solutions like bicarbonate avoids the energy demands...  more » « less
Award ID(s):
2219162 2316481
PAR ID:
10640703
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
RSC
Date Published:
Journal Name:
Green Chemistry
ISSN:
1463-9262
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Given the continuous and excessive CO 2 emission into the atmosphere from anthropomorphic activities, there is now a growing demand for negative carbon emission technologies, which requires efficient capture and conversion of CO 2 to value-added chemicals. This review highlights recent advances in CO 2 capture and conversion chemistry and processes. It first summarizes various adsorbent materials that have been developed for CO 2 capture, including hydroxide-, amine-, and metal organic framework-based adsorbents. It then reviews recent efforts devoted to two types of CO 2 conversion reaction: thermochemical CO 2 hydrogenation and electrochemical CO 2 reduction. While thermal hydrogenation reactions are often accomplished in the presence of H 2 , electrochemical reactions are realized by direct use of electricity that can be renewably generated from solar and wind power. The key to the success of these reactions is to develop efficient catalysts and to rationally engineer the catalyst–electrolyte interfaces. The review further covers recent studies in integrating CO 2 capture and conversion processes so that energy efficiency for the overall CO 2 capture and conversion can be optimized. Lastly, the review briefs some new approaches and future directions of coupling direct air capture and CO 2 conversion technologies as solutions to negative carbon emission and energy sustainability. 
    more » « less
  2. An innovative integrated route for CO2capture and conversion to methane relying on inexpensive metal hydroxides and nickel-based catalysts is presented. 
    more » « less
  3. Herein, we present a membrane-based system designed to capture CO2 from dilute mixtures and convert the captured CO2 into value-added products in a single, integrated process operated continuously at mild conditions. Specifically, we demonstrate that quaternized poly(4-vinylpyridine) (P4VP) membranes are selective CO2 separation membranes that are also catalytically active for cyclic carbonate synthesis from the cycloaddition of CO2 to epichlorohydrin. We further demonstrate that quaternized P4VP membranes can integrate CO2 capture, including from dilute mixtures down to 0.1 kPa CO2, with CO2 conversion to cyclic carbonates at 57 °C and atmospheric pressure. The catalytic membrane acts as both the CO2 capture and conversion medium, providing an energy-efficient alternative to sorbent-based capture, compression, transport, and storage. The membrane is also potentially tunable for CO2 conversion to a variety of products, including chemicals and fuels not limited to cyclic carbonates, which would be a transformative shift in carbon capture and utilization technology. 
    more » « less
  4. Abstract Rising CO2levels are leading to an increase in atmospheric greenhouse gas effect. Hydroxide salts have previously been shown to be promising reagents for capturing CO2. Utilizing a 5 %Ru/Al2O3catalyst, the carbonates obtained through CO2capture can then be hydrogenated to methane. This conversion occurs at relatively mild temperatures from 200 °C to 250 °C under 40 to 70 bar H2with yields of up to 100 %. Natural sources of calcium carbonate, like eggshells and seashells, can also be partially converted to methane. The direct air CO2capture and conversion of CO2to methane was achieved as well in quantitative yields. 
    more » « less
  5. This work demonstrates a nanoparticle-enabled integration of air capture and conversion of CO2. Ambient CO2is captured in a KOH–ethylene glycol solution and then selectively reduced to formate under 50 °C and ambient pressure using Pd NPs. 
    more » « less